搜索到536篇“ 哈密尔顿性“的相关文章
条件故障下BCube网络的容错哈密尔顿
2024年
BCube是一种重要的数据中心网络,它有许多较好的质和稳定的通信能,它的逻辑结构图通常用BC_(n,k)表示。对条件故障下BCube网络的容错哈密尔顿进行了研究,设F(BC_(n,k))表示BC_(n,k)中故障元素组成的集合,f_(e)、f_(v)、f_(s)分别表示故障边、故障点以及故障交换机的数量,在BC_(3,2)中,若f_(e)+f_(v)+2f_(s)=5,且满足BC_(3,2)-F(BC_(3,2))的最小度δ≥2,则BC_(3,2)-F(BC_(3,2))是哈密尔顿的。
郝文鹃李晶闫婷婷刘晶
关键词:数据中心网络容错性哈密尔顿性
图的规范拉普拉斯谱与哈密尔顿
图谱理论主要通过多项式理论、矩阵理论和代数学理论,结合图的结构质对图的谱特征与谱的图特征等问题展开研究.图矩阵是图谱理论的重要组成部分,它能够反映图的参数质,从而揭示图的结构质.设A(G)和D(G)分别是图G的邻接...
张亚飞
关键词:度序列哈密尔顿性重数完美匹配
平衡二部无向图的哈密尔顿的度条件
无向图的哈密尔顿圈及其相关问题是图论的基本问题,受到了广泛的关注.本文主要研究了平衡二部无向图是哈密尔顿二连通的两类度条件,完全刻画了其中一类度条件下不存在哈密尔顿圈的极图,并且研究了平衡二部无向图在这类度条件下的顶点偶...
王佳
关键词:哈密尔顿圈极图度条件
图的哈密尔顿与匹配可扩的若干问题研究
判定一个图是否具有某种结构质是图论中的一个重要问题。图的哈密尔顿,哈密尔顿连通以及匹配可扩的研究更是本领域中的难点问题。图的拓扑指标是一个与其结构质息息相关的拓扑不变量,它在判定化学分子的各种质方面有着重要的...
王帅
2-坚韧图哈密尔顿的一个充分条件
2024年
设t是一个非负实数,G是一个图,如果对任意S⊆(G)都存在t使得|S|≥t·c(G-S)成立,其中c(G-S)≥2,则称G是t-坚韧图.满足不等式条件的最大值t称为图G的坚韧度.设G是一个2-坚韧图,|V(G)|=n≥3,若任意两个非邻接点u,v∈V(G)满足max{d(u),d(v)}>n/3+2,则G是一个哈密尔顿图.
陈涛
关键词:坚韧度
图的哈密尔顿的谱与度充分条件
谢欣宇
图的哈密尔顿的一个充分条件
图的哈密尔顿问题一直是图论中的经典问题,直到现在,它们依旧是NP-完全问题,还没有被完美地解决,还有很多问题值得被研究.图谱理论是现代代数图论里的一个重要的研究范围,它所研究的主体内容就是图的各种代数所表示的图谱属,并...
许秋晨
关键词:泛圈性哈密尔顿性谱半径
EDS指数与平衡二部图的哈密尔顿
2023年
如果一个图的顶点集可以划分为两个不相交的子集X和Y,这里|X|=|Y|,使得每条边都有一个端点在X中,另一个端点在Y中,那么称此图为平衡二部图.本文利用平衡二部图的特殊结构找到了原图或其拟补图关于EDS指数的界,结合平衡二部图中特殊质的度序列与边条件,根据原图或其拟补图的EDS指数分别给出一个平衡二部图是可迹的、哈密尔顿或弱哈密尔顿-连通的充分条件.
李青刘莉袁慧
关键词:哈密尔顿性
蜻蜓网络的泛圈哈密尔顿
蜻蜓网络使用一组路由器作为虚拟路由器,具有直径小、低延迟、低成本、高带宽等特点,在数据交换方面具有显著优势,因而在高能计算系统(HPC)的应用中有很大的发展潜力. 本文选择无平行链路、相对全局链路连接方式的蜻蜓网络D(...
霍谨
关键词:泛圈性哈密尔顿性
无符号拉普拉斯谱半径与图的哈密尔顿被引量:1
2023年
在结构图论中,图的哈密尔顿的谱刻画是最具有影响力的课题之一,其主要思想是判断一个图是不是哈密尔顿图,这是NP-完全问题。因此,诸多学者对哈密尔顿问题的研究主要集中在寻找适当的充分条件。本文借助补图的无符号拉普拉斯谱半径来刻画具有较大最小度的图的哈密尔顿。首先,采用反证法构造了原图的闭包,将原图是否具有某质转化到其闭包中;其次对闭包补图的结构进行了合理的分类讨论;最后分别给出了具有较大最小度的图G是哈密尔顿的,哈密尔顿-连通的以及从任意点出发可迹的关于无符号拉普拉斯谱半径的充分条件。
何焕王礼想叶淼林
关键词:哈密尔顿最小度

相关作者

徐新萍
作品数:44被引量:26H指数:3
供职机构:江苏第二师范学院
研究主题:独立集 哈密尔顿性 英文 连通图 部分平方图
吕明富
作品数:10被引量:18H指数:2
供职机构:喀什师范学院数学系
研究主题:半无爪图 支配 P 哈密尔顿性 P3
赵克文
作品数:62被引量:33H指数:3
供职机构:琼州大学数学系
研究主题:邻域并 泛圈图 图论 简单图 最小度
李晶
作品数:20被引量:18H指数:3
供职机构:太原科技大学应用科学学院
研究主题:互连网络 容错性 网络 立方体 哈密尔顿性
杜淅霞
作品数:11被引量:9H指数:2
供职机构:喀什师范学院物理系
研究主题:半无爪图 哈密尔顿性 支配 P 差异教学