采用核磁共振(Nuclear magnetic resonance,NMR)测试了玄武岩-聚丙烯混杂纤维混凝土(HBPRC)的孔隙特征,对比分析了玄武岩纤维(BF)和聚丙烯纤维(PF)及二者混杂对HBPRC的抗压强度、孔隙率、孔径分布和曲折度的影响,并基于核磁共振T2谱和孔隙结构分形理论对4个孔径区域的孔隙结构分形维数进行了量化。结果表明:随着BF的添加,T2谱反映出适量的BF可以减小混凝土的孔隙率,而且有利于减小大孔体积占比;而随着PF含量增加,T2谱面积增加,且混凝土内部孔隙有变大的趋势。掺入BF-PF混杂纤维对混凝土的孔隙特征会产生正协同作用,当BF和PF掺量均为0.05vol%时,协同作用最佳,与普通混凝土相比,抗压强度提高了3.52%、孔隙率降低了1.47%、曲折度提高了8.20%。凝胶孔体积占比增大了8.76%,大孔体积占比降低了5.30%,孔径分布得到优化。HBPRC的孔隙结构具有明显的分形特征,孔隙结构分形维数在过渡孔、毛细孔和大孔区域依次增加,此外,分形维数越大,抗压强度越大。通过微观分析认为,纤维在混凝土基体中的粘结状态和分布是影响HBPRC孔隙分形特征的主要原因。
为探究应力作用下黄泛区粉土孔隙特征的变化规律及应力作用影响机制,开展了不同应力状态下黄泛区粉土扫描电镜(scanning electron microscopy,SEM)和核磁共振(nuclear magnetic resonance,NMR)试验与分析。结果表明:应力作用不会改变黄泛区粉土的双峰孔隙结构;在较低正应力(0~200 kPa)作用下,黄泛区粉土存在一个临界正应力,在临界正应力前后,其孔隙特征参数随应力作用变化趋势相反;应力作用对黄泛区粉土集聚体间孔隙的影响大于对集聚体内孔隙的影响;随着应力作用增大,集聚体间孔隙总体积减小,其中孔径大于优势孔径的集聚体间孔隙体积首先减小;随着应力作用增大,集聚体内孔隙总体积增大,其中孔径小于优势孔径的集聚体内孔隙体积增大较为明显。
土体的宏观性质主要受其微观结构和孔隙特征的影响。查明土体在冻融等外部条件影响下的微观演化规律对岩土工程研究具有重要意义。草炭土作为季节性冻土和特殊土,由于其腐殖质和植物纤维含量较高,具有较高的压缩性和较低的强度。因此,以草炭土为研究对象,通过土工试验、核磁共振(nuclear magnetic resonance,简称NMR)、X射线计算机断层扫描(computed tompography,简称CT)和扫描电子显微镜(scanning electron microscope,简称SEM)等方法研究了草炭土的微观结构、孔隙特征和冻融效应。基于岩土力学和核磁共振理论,完成CT切片和SEM的微观图像分割,以识别空气孔隙和储水孔隙。结合微观图像和成分分析,草炭土的微观结构揭示了有机质组分是能够容纳和传导水分的土壤基质。冻融后草炭土的孔径分布表现为中孔比例增加,孔隙总体数量显著增加。因此,量化微观参数表明冻融后草炭土的孔隙连通性增强,孔隙形状复杂程度降低,渗透性增强。通过对非饱和土理论计算的验证表明,核磁共振方法能够有效地表征冻融土渗透性的变化。研究成果可作为高有机质、高纤维含量土壤研究的基础,也可作为草炭土分布区工程建设的参数依据。