Small and isolated populations face several intrinsic risks,such as genetic drift,inbreeding depression,and reduced gene fow.Thus,patterns of genetic diversity and differentiation have become an important focus of conservation genetics research.The golden snub-nosed monkey Rhinopithecus roxellana,an endangered species endemic to China,has experienced rapid reduction in population size and severe population fragmentation over the past few decades.We measured the patterns of genetic diversity and population differentiation using both neutral microsatellites and adaptive major histocompatibility complex(MHC)genes in 2 R.roxellana populations(DPY and GNG)distributed on the northern and southern slopes of the Qinling Mountains,respectively.Eight MHC-linked haplotypes formed by 5 DQA1 alleles,5 DQB1 alleles,5 DRB1 alleles,and 4 DRB2 alleles were detected in the 2 populations.The larger GNG population showed higher genetic variation for both MHC and microsatellites than the smaller DPY population,suggesting an effect of genetic drift on genetic variation.Genetic differentiation index(FST)outlier analyses,principal coordinate analysis(PCoA),and inferred population genetic structure showed lower genetic differentiation in the MHC variations than microsatellites,suggesting that pathogen-mediated balancing selection,rather than local adaptation,homogenized the MHC genes of both populations.This study indicates that both balancing selection and genetic drift may shape genetic variation and differentiation in small and fragmented populations.
Birds,a fascinating and diverse group occupying various habitats worldwide,exhibit a wide range of life-history traits,reproductive methods,and migratory behaviors,all of which influence their immune systems.The association between major histocompatibility complex(MHC)genes and certain ecological factors in response to pathogen selection has been extensively studied;however,the role of the co-working molecule T cell receptor(TCR)remains poorly understood.This study aimed to analyze the copy numbers of TCR-V genes,the selection pressure(ωvalue)on MHC genes using available genomic data,and their potential ecological correlates across 93 species from 13 orders.The study was conducted using the publicly available genome data of birds.Our findings suggested that phylogeny influences the variability in TCR-V gene copy numbers and MHC selection pressure.The phylogenetic generalized least squares regression model revealed that TCR-Vαδcopy number and MHC-I selection pressure were positively associated with body mass.Clutch size was correlated with MHC selection pressure,and Migration was correlated with TCR-Vβcopy number.Further analyses revealed that the TCR-Vβcopy number was positively correlated with MHC-IIB selection pressure,while the TCR-Vγcopy number was negatively correlated with MHC-I peptide-binding region selection pressure.Our findings suggest that TCR-V diversity is significant in adaptive evolution and is related to species’life-history strategies and immunological defenses and provide valuable insights into the mechanisms underlying TCR-V gene duplication and MHC selection in avian species.