Due to our increasing dependence on infrastructure networks,the attack and defense game in these networks has draw great concerns from security agencies.Moreover,when it comes to evaluating the payoffs in practical attack and defense games in infrastructure networks,the lack of consideration for the fuzziness and uncertainty of subjective human judgment brings forth significant challenges to the analysis of strategic interactions among decision makers.This paper employs intuitionistic fuzzy sets(IFSs)to depict such uncertain payoffs,and introduce a theoretical framework for analyzing the attack and defense game in infrastructure networks based on intuitionistic fuzzy theory.We take the changes in three complex network metrics as the universe of discourse,and intuitionistic fuzzy sets are employed based on this universe of discourse to reflect the satisfaction of decision makers.We employ an algorithm based on intuitionistic fuzzy theory to find the Nash equilibrium,and conduct experiments on both local and global networks.Results show that:(1)the utilization of intuitionistic fuzzy sets to depict the payoffs of attack and defense games in infrastructure networks can reflect the unique characteristics of decision makers’subjective preferences.(2)the use of differently weighted proportions of the three complex network metrics has little impact on decision makers’choices of different strategies.
In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. This study was carried out on the Konni irrigated perimeter, the objective of which is to analyze the physical state of hydraulic infrastructures and their operation before the rehabilitation of the said perimeter. The methodology adopted consisted, first of all, of documentary research focused on data relating to this scope and our theme to properly guide the collection of data in the field. The field phase was then followed with an observation of hydraulic infrastructures one by one in order to assess their condition. Thus, the collected data was processed and analyzed. The results of this study show a notable deterioration of hydraulic infrastructure which affected the operating yield of the study area, with the development of barely 700 ha out of 1226 ha planned by the basic study for off-season production (57%). Bathymetric measurements showed that the volume of sediment that accumulated in the Zongo Dam is 1.2 million m3, which reduces its initial capacity from 12 million m3 to 10.8 million m3 after 43 years of service. The expansion joints of the feed canal are all in poor condition. 90% of the total length of the tertiary canals are degraded, 82.32% of the panels of the main canal C are degraded and 17.68% are cracked. All crossing structures are blocked between the RN1 and the Zongo dam. Based on this critical situation, it would be essential to consider rehabilitation work on all infrastructure in order to restore the hydraulic and even agronomic performance of the Konni irrigated area.
Solid waste management in Freetown has been further complicated in the wake of rapid population growth and urbanization, resulting in considerable pressure to implement effective and sustainable solutions. This study fills the knowledge gap on the recycling infrastructure, solid waste collection processing, sorting and material recovery facilities specific to the Freetown waste management system. The aim of this study is to examine these components in terms of identifying inefficiencies and suggest sustainable practices to eliminate them. The study was guided by a mixed-method approach, which consisted of both quantitative and qualitative methods, and data collection was done through systematic random sampling. The sample of 384 respondents was collected, which includes stakeholders from a range of sectors. The outcome exhibited inefficient waste collection, a lack of formal recycling infrastructure, and suboptimal waste separation at house level, with 65.2% of respondents evidencing not separating their waste and 33% being without access to waste collection services that result in illegal dumping and environmental pollution. The analysis of the solid waste composition shows that a larger share of the waste generated in Freetown is composed of organic material (53% is being organic), which allows for composting programs to be initiated. This research establishes the inevitable requirement for infrastructure upgrading, mounting public awareness, and policy development. By taking into account these sectors, Freetown can become a more environment-friendly waste management system, which would mean a reduction in landfills and much-emphasized resource recovery.