The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.
In this study,a CFD model coupled with heterogeneous flow structure,mass transfer equations,and chemical reaction kinetics is established to forecast the pyrolusite reduction reaction behavior.Compared with the previous studies which ignore the volume change of solids phase,the influence of volume shrinkage on reaction and flow behavior is explored in this research.Volume shrinkage of pyrolusite is proved to be non-negligible in predicting the conversion rate.The negligence of volume shrinkage leads to the overestimation of conversion rate for its inaccurate estimation of surface area for reaction.Besides,the influence of volume shrinkage on the reaction is found smaller in the scaled-up reactor.
Jingyi ZhuQi LiuZheng ZouQingshan ZhuHongzhong LiHaoran Li