雌激素受体(Estrogen receptor,esr)介导雌激素影响相关基因表达,从而调控哺乳动物的生长和繁殖机能。为了探讨esr基因的反转录转座子多态性对猪生长性能的影响,文中应用比较基因组学和生物信息学方法,预测猪esr基因的反转录转座子插入位点,采用PCR方法验证不同品种猪中插入多态性,并将该基因型与大白猪性能进行关联分析。结果显示,esr1和esr2基因验证后得到4个反转录转座子多态性位点,分别是位于esr1基因内含子2的esr1-SINE-RIP1、位于内含子5的esr1-LINE-RIP2和esr1-SINE-RIP3,以及位于esr2基因内含子1的esr2-LINE-RIP。其中esr1-SINE-RIP1的287 bp SINE插入对大白猪的活体背膘厚和100 kg体重背膘厚有显著影响(P<0.05),纯合有插入(SINE^(+/+))的活体背膘厚和100kg体重背膘厚显著高于杂合有插入(SINE^(+/-))和无插入(SINE^(-/-))型。这表明esr1-SINE-RIP1位点可作为分子标记辅助选育大白猪的背膘厚性状。
Soybean(Glycine max) is an important legume crop that was domesticated in temperate regions.Soybean varieties from these regions generally mature early and exhibit extremely low yield when grown under inductive short-day(SD) conditions at low latitudes. The long-juvenile(LJ) trait, which is characterized by delayed flowering and maturity,and improved yield under SD conditions, allowed the cultivation of soybean to expand to lower latitudes. Two major loci control the LJ trait: J and E6. In the current study, positional cloning, sequence analysis, and transgenic complementation confirmed that E6 is a novel allele of J, the ortholog of Arabidopsis thaliana EARLY FLOWERING 3(ELF3). The mutant allele e6^(PG), which carries a Ty1/Copia-like retrotransposon insertion, does not suppress the legume-specific flowering repressor E1, allowing E1 to inhibit Flowering Locus T(FT) expression and thus delaying flowering and increasing yields under SD conditions. The e6^(PG)allele is a rare allele that has not been incorporated into modern breeding programs.The dysfunction of J might have greatly facilitated the adaptation of soybean to low latitudes. Our findings increase our understanding of the molecular mechanisms underlying the LJ trait and provide valuable resources for soybean breeding.