Tungsten/molybdenum alloys are widely utilized in the nuclear industry,aerospace and various other fields due to their high melting points and strength characteristics.However,poor sinterability and processability make it difficult to manufacture largesize or complex-shaped parts.Hence,an in-depth study on the welding technology of tungsten/molybdenum alloys is urgent.An introduction of tungsten/molybdenum alloy welding defects and joining process was provided,along with recent advancements in brazing,spark plasma sintering diffusion bonding,electron beam welding and laser beam welding.The latest progress in alloy doping treatment applied to tungsten/molybdenum alloy dissimilar welding was also discussed,and existing welding problems were pointed out.The development prospects of weldability of tungsten/molybdenum alloy by various joining technologies were forecasted,thereby furnishing a theoretical and practical found.
Wang XingxingChu HaoqiangXie XuPan KunmingDu QuanbinLi AngZhang Liyan
Carbon dioxide photocatalytic reduction (CO_(2)-PR) is an efficient method for controlling CO_(2)emissions and generating cleaner energy while mitigating global warming.Tungsten oxides (WxOy) have attracted considerable attention for CO_(2)-PR due to their excellent spectral absorbance.However,comprehensive reviews are lacking on the use of WxOyfor CO_(2)-PR.Therefore,this review provides a detailed summary of t research progress made with WxOy-based catalysts in CO_(2)-PR.It also explains the fundamental principles of CO_(2)-PR and evaluates key performance indicators that affect the activity of WxOy-based photocatalysts,including yield,selectivity,stability,and apparent quantum yield.Additionally,this review explores opportunities for synthesizing high-performance WxOy-based photocatalysts and highlights their potential for the green preparation of C1/C2 products through CO_(2)-PR.These innovative strategies aim to address the challenges and pressures associated with energy and environmental issues,particularly by enhancing artificial photosynthesis efficiency.