仿射传播(Affinity propagation,AP)聚类算法是将所有待聚类对象作为潜在的聚类中心,通过对象之间传递的可靠性和有效性信息找到合适的聚类中心,从而计算出相应的聚类结果,但不适用子空间聚类。将粒度计算引入到仿射传播聚类算法中,提出属性与样本同步粒化的AP熵加权软子空间聚类算法(Entropy weighting AP algorithm for subspace clustering based on asynchronous granulation of attributes and samples,EWAP)。EWAP首先去除冗余属性,然后在每次聚类的迭代过程中修改属性的权重值。在满足一定条件迭代终止时,就会得到构成各兴趣度子空间的属性权重值,从而得到属性集的粒化结果以及相应的子空间聚类结果。理论与实验证明EWAP算法既保留了AP算法的优点,又克服了该聚类算法不能进行子空间聚类的不足。
在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这一问题,分别从理论和实验上证明了多智能体深度确定性策略梯度方法存在价值函数被高估.提出基于双评论家的多智能体深度确定性策略梯度(multiagent deep deterministic policy gradient method based on double critics,MADDPG-DC)方法,通过在双评论家网络上的最小值操作来避免价值被高估,进一步促进智能体学得最优的策略.此外,延迟行动者网络更新,保证行动者网络策略更新的效率和稳定性,提高策略学习和更新的质量.在多智能体粒子环境和交通信号控制环境上的实验结果证明了所提方法的可行性和优越性.
密度峰值聚类算法(Density peaks clustering,DPC)是一种基于密度的新型聚类算法。该算法的优点十分显著:所需参数较少,没有迭代过程,能自适应获得聚类数目并识别任意形状的簇类。该算法也有一些问题亟待解决:(1)在决策图上人工选择聚类中心,产生聚类误差;(2)在密度不同的流形数据集上聚类效果不佳。针对这些不足,该文提出一种基于电子分层模型和凝聚策略的密度峰值聚类算法(Density peaks clustering based on electronic shells model and merging strategy,EMDPC)。其利用电子分层模型计算每个数据点的局部密度,更易识别出低密度簇;通过子簇凝聚策略自适应识别簇类数目,降低了人工选取聚类中心时误差发生的概率;并且子簇凝聚策略能较好地解决DPC在密度不均匀的流形数据上聚类效果不佳的问题。实验分析表明基于电子分层模型和凝聚策略的密度峰值聚类算法具有较高的精度和较好的聚类性能,其结果优于其他先进的聚类算法。