N-wells are created by P+ ion implantation into Si-faced p-type 4H-SiC epilayer. Ti and Ni are deposited in sequence on the surface of the active regions. Ni2Si is identified as the dominant phase by X-ray diffraction (XRD) analysis after metallization annealing. An amorphous C film at the Ni2 Si/SiC interface is confirmed by an X-ray energy-dispersive spectrometer (XEDS). The Ni2Si and amorphous C film are etched away selectively,followed by deposition of new metal films without annealing. Measurement of the current-voltage characteristics shows that the contacts are still ohmic after the Ni2 Si and amorphous C film are replaced by new metal films. The sheet resistance Rsh of the implanted layers decreases from 975 to 438f2/D, because carbon vacancies (Vc) appeared during annealing,which act as donors for electrons in SiC.
A precise theoretical calculation off the pinch of voltage of the box-like ion implantation 4H-SiC MESFETs is investigated with the consideration of the effects of the ion-implanted channel and the depth of MESFETs channel.The implant depth profile is simulated using the Monte Carlo simulator TRIM.The effects of parameters such as temperature,acceptor density,and activation rate on channel depth a,pinch off voltage are studied.