In this paper, explicit determination of the cyclotomic numbers of order l and 2l, for odd prime l ≡ 3 (mod 4), over finite field Fq in the index 2 case are obtained, utilizing the explicit formulas on the corresponding Gauss sums. The main results in this paper are related with the number of rational points of certain elliptic curve, called "Legendre curve", and the properties and value distribution of such number are also presented.
Gauss sums play an important role in number theory and arithmetic geometry. The main objects of study in this paper are Gauss sums over the finite field with q elements. Recently, the problem of explicit evaluation of Gauss sums in the small index case has been studied in several papers. In the process of the evaluation, it is realized that a sign (or a root of unity) ambiguity unavoidably occurs. These papers determined the ambiguities by the congruences modulo L, where L is certain divisor of the order of Gauss sum. However, such method is unavailable in some situations. This paper presents a new method to determine the sign (root of unity) ambiguities of Gauss sums in the index 2 case and index 4 case, which is not only suitable for all the situations with q being odd, but also comparatively more efficient and uniform than the previous method.