Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.
The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties. In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrA1Y foams was modeled by using a finite element (FE) model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well with experimental data.
An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.
Open celled metal foams fabricated through metal sintering are a new class of material that offers novel mechanical and acoustic properties. Previously, polymer foams have been widely used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. In this first part of two-paper series, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams were characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throu- ghout the microstructure that result from the unique fabrication process. Further in situ tests were carried out in a SEM (scanning electronic microscope) in order to investigate the effects of defects on the properties of the foams. Typically, the onset of plastic yielding was observed to occur at defect locations within the microstructure. At lower relative densities, ligament bending dominates, with the deformation initializing at defects. At higher relative densities, an additional deformation mechanism associated with membrane elements was observed. In the follow-up of this paper, a finite element model will be constructed to quantify the effects of defects on the mechanical performance of the opencell foam.