By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.
Using the well-behaved features of the thermal entangled state representation, we solve the diffusion master equation under the action of a linear resonance force, and then obtain the infinitive operator-sum representation of the density operator. This approach may also be effective for treating other master equations. Moreover, we find that the initial pure coherent state evolves into a mixed thermal state after passing through the diffusion process under the action of the linear resonance force.
We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Constructing asymmetric ket-bra integrations based on the NBES leads to some new squeezing operators,which clearly exhibit the relationships between squeezing and entangled state transformations.Moreover,an entangled Wigner operator with a definite physical meaning is also presented.
A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the coherent-entangled state using an asymmetric beamsplitter is proposed. Some applications of the coherent-entangled state in quantum optics are also oresented.