In this paper, under the criterion of maximizing the expected exponential utility of terminal wealth, we study the optimal proportional reinsurance and investment policy for an insurer with the compound Poisson claim process. We model the price process of the risky asset to the constant elasticity of variance (for short, CEV) model, and consider net profit condition and variance reinsurance premium principle in our work. Using stochastic control theory, we derive explicit expressions for the optimal policy and value function. And some numerical examples are given.
This paper investigates a dynamic asset allocation problem for loss-averse investors in a jumpdiffusion model where there are a riskless asset and N risky assets. Specifically, the prices of risky assets are governed by jump-diffusion processes driven by an m-dimensional Brownian motion and a(N- m)-dimensional Poisson process. After converting the dynamic optimal portfolio problem to a static optimization problem in the terminal wealth, the optimal terminal wealth is first solved. Then the optimal wealth process and investment strategy are derived by using the martingale representation approach. The closed-form solutions for them are finally given in a special example.