By means of the Hermitian metric and Chern connection, Qiu [4] obtained the Koppelman-Leray-Norguet formula for (p, q) differential forms on an open set with C^1 piecewise smooth boundary on a Stein manifold, and under suitable conditions gave the solutions of δ^--equation on a Stein manifold. In this article, using the method of Range and Siu [5], under suitable conditions, the authors complicatedly calculate to give the uniform estimates of solutions of δ^--equation for (p, q) differential forms on a Stein manifold.
In this paper, the Laplacian on the holomorphic tangent bundle T 1,0 M of a complex manifold M endowed with a strongly pseudoconvex complex Finsler metric is defined and its explicit expression is obtained by using the Chern Finsler connection associated with (M, F ). Utilizing the initiated "Bochner technique", a vanishing theorem for vector fields on the holomorphic tangent bundle T 1,0 M is obtained.
First of all, using the relations (2.3), (2.4), and (2.5), we define a complex Clifford algebra Wn and the Witt basis. Secondly, we utilize the Witt basis to define the operators δ and δ on Kaehler manifolds which act on Wn-valued functions. In addition, the relation between above operators and Hodge-Laplace opeator is argued. Then, the Borel-Pompeiu formulas for W-valued functions are derived through designing a matrix Dirac operator D and a 2 × 2 matrix-valued invariant integral kernel with the Witt basis.
In this paper,by the method of global analysis,the authors give a new global integral transformation formula and obtain the Plemelj formula with Hadamard principal value of higher-order partial derivatives for the integral of Bochner-Martinelli type on a closed piecewise smooth orientable manifold Cn.Moreover,the authors obtain the composition formula,Poincar'e-Bertrand extended formula of the corresponding singular integral.As the application of some results,the authors also study a higher-order Cauchy boundary problem and a regularization problem of higher-order linear complex differential singular integral equation with variable coefficients.
HUANG YuSheng1,& LIN LiangYu2 1Department of Mathematics,Putian College,Putian 351100,China
By using the Chern-Finsler connection and complex Finsler metric, the Bochner technique on strong K/ihler-Finsler manifolds is studied. For a strong K/ihler-Finsler manifold M, the authors first prove that there exists a system of local coordinate which is normalized at a point v ∈M = T1.0M/o(M), and then the horizontal Laplace operator NH for differential forms on PTM is defined by the horizontal part of the Chern-Finsler connection and its curvature tensor, and the horizontal Laplace operator H on holomorphic vector bundle over PTM is also defined. Finally, we get a Bochner vanishing theorem for differential forms on PTM. Moreover, the Bochner vanishing theorem on a holomorphic line bundle over PTM is also obtained