The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes by micelle method, and their structures were characterized by HRTEM and XRD, respectively. Furthermore, the catalytic activities were tested by CO oxidation. Experimental results showed that the catalytic activity became much weaker when gold particles were increased from 3.2 to 6.6 nm. Additionally, the particle size was also a key factor to govern catalytic activity with regard to gold supported on TiO2 prepared by the methods of deposition-precipitation.
The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this calculations, we found some lower-energy sites for the adsorption of an extra Ga atom in the surface, which were in agreement with the experimental data. Moreover, many possible pathways for an extra Ga atom diffusing in this surface were revealed. According to the relative energies of the possible pathways, the individual Ga adatoms preferably keep their diffusion in two pathways parallel to the As dimers. This result can be understood using the strain caused by the diffusing Ga atom in the pathways. In addition, the simulated kinetic processes of the extra Ga atom diffusing in different pathways at finite temperatures support the prediction from our calculated potential energy surface.