This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.
By using variational method, the multiplicity of solutions for nonlinear biharmonic equation involving critical parameter and critical exponent are established.
In this paper, we study the p-Laplacian-Like equations involving Hardy potential or involving critical exponent and prove the existence of one or infinitely many nontrivial solutions. The results of the equations discussed can be applied to a variety of different fields in applied mechanics.
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.