In order to increase the production efficiency of coenzyme Q10, the original strain Agrobacterium tumefaciens ATCC 4452 was mutated by means of Nitrogen ions implantation. A mutant strain, ATX 12, with high contents of coenzyme Q10 was selected. Subsequently, the conditions such as carbohydrate concentration, nitrogen source concentration, inoculum's size, seed age, aeration and temperature which might affect the production of CoQ10 were investigated in detail. Under optimal conditions, the maximum concentration of the intracellular CoQ10 reached 200.3 mg/L after 80 h fed-batch fermentation, about 245% increasing in CoQ10 production after ion implantation, compared to the original strain.
The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.