Cu-Ni core-shell nanowires, with an inner Cu core diameter of about 60 nm and varying Ni shell thicknesses (10, 30, 50, 60, and 80 nm), were successfully fabricated in porous polycarbonate (PC) ion- track templates by a two-step etching and electrodeposition method. In our experiment, the thickness of Ni shell can be effectively tuned through the etching time of templates. The core-shell structure was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern elucidates the co-existence of characteristic peaks for both Cu and Ni, indicating no other phases were formed during preparation. Magnetic hysteresis loops measured via vibrating sample magnetometry (VSM) revealed that Cu-Ni core-shell nanowires with thinner Ni shell exhibited obviously diamagnetic character and together with a weak ferromagnetic activity, whereas ferromagnetic behavior was primarily measured for the wires with thicker Ni shell. With increasing Ni shell thickness, the squareness and coercivity value became smaller due to the shape anisotropy and the formation of multi-domain structure.
Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions(209Bi, 9.5 Me V/u) with the fluences in a range of 1011ions/cm2–1012ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the 'blue shift' of 2D bond and the 'red shift' of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φthis. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6 × 1012ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak(HD/HD).
On the basis of previous research achievements of measuring the solid state nuclear track in apatite by thermal analysis method, the author further proposes the research program to measure the energy deposited by the solid state nuclear track contained in zircon, sphene, epidote, apatite and other samples, in order to study the geological age and geothermal history. Compared with the measurement of nuclear track density by etching method, this one does not need to conduct so many processing programs for samples, but can improve the measurement accuracy.