Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H···O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.
HE HongYanZHENG YanZhenCHEN HuiZHANG XiaoChunYAO XiaoQianZHANG SuoJiang
To solve the inherent disadvantages in conventional processes for electrodeposition of zinc, it's necessary to develop more high-efficiency and environmentally friendly electrolytes. In this work, it was found that the dissolution of ZnO was remarka- bly enhanced in some imidazolium chloride by the addition of urea, and the solubility of ZnO in 1:1 [Amim]C1/urea mixture was as high as 8.35 wt% at 373.2 K. Electrochemical measurements showed that zinc could be readily electrodeposited from the solutions of ZnO. Bright, dense and well adherent zinc coatings with good purity were obtained from 0.6 M solution of ZnO in 1:1 [Amim]C1/urea at 323.2-343.2 K. It's expected that the solutions of ZnO in imidazolium chloride/urea mixtures have the potential to replace the traditional electrolytes, especially toxic zinc chloride-based ones for zinc electroplating, as well as preparation of zinc materials.
The production of monovinylacetylene (MVA) through Cu(I)-catalyzed acetylene dimerization reaction was performed in different reaction media. Based on the analyses of crystals precipitated from the catalyst solution and UV-Vis spectra of the catalysts, the reaction mechanism and solvent dependence were studied. The highest yield of MVA can be obtained when dimethylformamide is used as solvent because of its strong coordination ability to Cu(I). The activation of C=C bond is presumed to be improved when the catalytic metal ion is coordinated by a solvent with less steric hindrance and electron-rich coordination atom. The results of the present study provide a possible way to accelerate the metal-catalyzed homogeneous reaction of alkyne substrates through careful selection of a solvent.
At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulose acetates(CAs)with the degree of substitution(DS)in a range from 0.4 to 3.0 were synthesized in one-step.The effects of reaction time,temperature and molar ratio of acetic anhydride/anhydroglucose unit(AGU) in cellulose on DS value of CAs were investigated.The synthesized CAs were characterized by means of FT-IR, NMR,and solubility,mechanical and thermal tests.After the acetylation,the used ionic liquid AmimCl was easily recycled and reused.This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications.