Based on the constructing thought of the displacement model of isoparametric finite element, an extended interpolating algorithm is deduced for calculating the overpressure history of an optional point on the walls of the rectangle-section tunnel under an optional point-explosion in its internal space. According to the working principle, the overpressure histories of all nodes on the walls of a tunnel with the equal width and height of 2 m, induced by a reference-charge explosion at each node in this tunnel's cross section, are computed using the LS-DYNA software, and then are gathered to establish a reference database, which makes it possible to set optionally the positions of the explosive and the overpressure-observed point. In addition, some variation factors of peak values and durations of overpressure on the walls, reflecting some changes on the charge weight and the sizes of width and height of the section, are included in this algorithm in order to simulate approximately the overpressure responses on the walls under the optional charge weight and cross-section size. Some example analyses indicate the rapidity and validity of this method, and therefore this will bring it a good prospect in engineering application.
A simplified method is proposed for analyzing the overpressure history of an optional point on the walls of a closed cuboid due to its internal optional point-explosion. Firstly, the overpressure histories of all nodes on the walls of a cube with a side-length of 2 m are computed under a reference-charge explosion at each node of its inner space using the LS-DYNA software, and then are collected to form a reference database. Next, with the thought of the isoparametric finite element, an interpolating algori...