Magnetic properties and magnetocaloric effects of La1-xRxFe11.5Si1.5 (R=Pr, (0 ≤ x ≤ 0.5); R = Ce and Nd, (0 ≤ x ≤ 0.3)) compounds are investigated. Partially replacing La with R = Ce, Pr and Nd in La1-xRxFe11.5Si1.5 leads to a reduction in Curie temperature due to the lattice contraction. The substitution of R for La causes an enhancement in field-induced itinerant electron metamagnetic transition, which leads to a remarkable increase in magnetic entropy change ASm and also in hysteresis loss. However, a high effective refrigerant capacity RCeff is still maintained in La1-xRxFe11.5Si1.5. In the present samples, a large △Sm and a high RCeff have been achieved simultaneously.
With the addition of Gd, the Ni56Mn18.8Ga24.5 Gd0.7 alloy exhibits non-modulated martensite phase at room temperature. From the illustration of Gd microstructure, it can be found that Gd exists along the subgrain boundaries. Hence, the crystalline size decreases and the mechanical properties improve. At-susceptibility results show that Ni56Mn18.8Ga24.5 Gd0.7 alloy still undergoes simultaneous structural and magnetic transitions and transforms from ferromagnetic martensitic phase to paramagnetic austenitic phase with increasing temperature. The maximum magnetic entropy change is 13.4 J· (kg·K) ^-1 under 1.9 T field at 338 K. The giant magnetocaloric effect found in Ni56Mn18.8Ga24.5 Gd0.7 alloy is attributed to the concurrently occurring first-order structural- and magnetic-phase transitions.
Effects of Nd-doping on the magnetic properties and magnetocaloric effects (MCEs) of NdxLa1-xFe11.5Al1.5 have been investigated. Substitution of Nd leads to a weakening of the antiferromagnetic (AFM) coupling and an enhancement of the ferromagnetic (FM) coupling. This in turn results in a complex magnetic behaviour for Nd0.2La0.8Fe11.5Al1.5 characterized by the occurrence of two phase transitions at ~188 K (PM AFM) and ~159 K (AFM-FM). As a result, a table-like MCE (9 J/kg.K) is found in a wide temperature range (160-185 K) for a field change of 0-5T around the transition temperature, as evidenced by both the magnetic and calorimetric measurements. Based on the analysis of low-temperature heat capacity, it is found that the AFM-FM phase transition modifies the electron density significantly, and the major contribution to the entropy change comes from the electronic entropy change.
X-ray powder diffraction, resistivity and magnetization studies have been performed on polycrystalline Nd(FexMn1-x)2Si2 (0≤x 〈 1) compounds which crystallize in a ThCr2Si2-type structure with the space group 14/mmm. The field-cooled temperature dependence of the magnetization curves shows that, at low temperatures, NdFe2Si2 is antiferromagnetic, while the other compounds show ferromagnetic behaviour. The substitution of Fe for Mn leads to a decrease in lattice parameters a, c and unit-cell volume V. The Curie temperature of the compounds first increases, reaches a maximum around x=0.7, then decreases with Fe content. However, the saturation magnetization decreases monotonically with increasing Fe content. This Fe concentration dependent magnetization of Nd(FexMn1-x)2Si2 compounds can be well explained by taking into account the complex effect on magnetic properties due to the substitution of Mn by Fe. The temperature's square dependence on electrical resistivity indicates that the curve of Nd(Fe0.6Mn0.4)2Si2 has a quasi-linear character above its Curie temperature, which is typical of simple metals.
The crystallographic and the magnetic structures of the composite compound Nd2Co7 at 300 K are investigated by a combined refinement of X-ray diffraction data and high-resolution neutron diffraction data. The compound crystallizes into a hexagonal Ce2NiT-type structure and consists of alternately stacking MgZn2-type NdCo2 and CaCus-type NdCo5 structural blocks along the c axis. A magnetic structure model with the moments of all atoms aligning along the c axis provides a satisfactory fitting to the neutron diffraction data and coincides with the easy magnetization direction revealed by the X-ray diffraction experiments on magnetically pre-aligned fine particles. The refinement results show that the derived atomic moments of the Co atoms vary in a range of 0.7 μB-1.1 μB and the atomic moment of Nd in the NdCo5 slab is close to the theoretical moment of a free trivalent Nd3+ ion, whereas the atomic moment of Nd in the NdCo2 slab is much smaller than the theoretical value for a free Nd3+ ion. The remarkable difference in the atomic moment of Nd atoms between different structural slabs at room temperature is explained in terms of the magnetic characteristics of the NdCo2 and NdCo5 compounds and the local chemical environments of the Nd atoms in different structural slabs of the Nd2Co7 compound.