We demonstrate sub-Rayleigh limit imaging of an object via intensity correlation measurements. The image com- pletely unaffected by the disturbance of diffraction-limit is achieved under the condition that the imaging system has an appropriate field of view. The resolution of this sub-Rayleigh limit imaging system is only tied to the lateral resolution of the illumination light.
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.