This paper overviews design for manufacturing (DFM) for IC design in nano-CMOS technologies. Process/device issues relevant to the manufacturability of ICs in advanced CMOS technologies will be presented first before an exploration on process/device modeling for DFM is done. The discussion also covers a brief introduction of DFM-aware of design flow and EDA efforts to better handle the design-manufacturing interface in very large scale IC design environment.
An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measure- ment in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer (TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capaci- tance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate.
The physical threshold voltage model of pMOSFETs under shallow trench isolation (STI) stress has been developed. The model is verified by 130 nm technology layout dependent measurement data. The comparison between pMOSFET and nMOSFET model simulations due to STI stress was conducted to show that STI stress induced less threshold voltage shift and more mobility shift for the pMOSFET. The circuit simulations of a nine stage ring oscillator with and without STI stress proved about 11% improvement of average delay time. This indicates the importance of STI stress consideration in circuit design.