Mesoporous CeO2 particles with high surface area were synthesized using a modified evaporation-induced self assembly(EISA) method which combined citric acid as complexing agent.As-prepared powder and further thermal treatment samples were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),selected area electron diffraction(SAED),Fourier transform infrared spectrometer(FTIR),thermogravimetry and differential thermal analysis(TG-DTA),Brunauer-Emmett-Teller(BET) and Barrett-Joyner-Ha...
Porous CeO2 hollow microspheres were successfully prepared through a facile process by using the rape pollen as the biotemplate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), the N2 adsorption and desorption, X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, and hydrogen temperature-programmed reduction (H2-TPR) were used for their characterization. The results showed that the obtained materials exhibited the same morphology as that of the pollen template, with a diameter of ca. 10 μm, and the surface was evenly covered with a special network-like structutre with mesh size of about 0.3 μm, and the Brunauer-Emmett-Teller (BET) surface area was measured to be 156 m2/g. The detailed property investigation inferred that the product exhibited better photocatalytic activity in acid fuchsine decolorization under daylight because of higher surface area, smaller crystallite size and higher oxygen capacity.