The absorption spectrum and the incoherent fluorescence spectrum of the lower transition in an E-configuration threelevel atomic system driven by a pair of bichromatic fields is investigated. The transmission of the absorption profile from a multipeaked feature to a single-peak feature is identified. Adjusting the relative phase between the two driving fields, the splitting effects of the spectral peaks occur both in the fluorescence and the absorption spectra. Furthermore, phase modulating can dramatically lead to a great suppression of the amplitudes ofthe whole absorption spectrum. Physically, this effect is attributed to the phase-sensitive nature of the populations and coherence between the atomic states of the system.
The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman scattering with sequential or simultaneous ultrashort pulses are investigated respectively. We find that the ultrashort pulses with about two optical cycles can be used to realize the population operation. This suggests that the population transfer can be completed in the femtosecond time scale. At the same time, our simulation shows that the signal of the carrier-envelope-phase-dependent effect can be enlarged due to quantum interference in some conditions. Our theoretic study may promote the research on the coherent control via ultrashort pulses in the related fields.