Confined nanospace pyrolysis(CNP)has attracted increasing attention as a general strategy to prepare task-specific hollow structured porous carbons(HSPCs)in the past decade.The unique advantages of the CNP strategy include its outstanding ability in control of the monodispersity,porosity and internal cavity of HSPCs.As a consequence,the obtained HSPCs perform exceptionally well in applications where a high dispersibility and tailored cavity are particularly required,such as drug delivery,energy storage,catalysis and so on.In this review,the fundamentals of the CNP strategy and its advances in structural alternation is first summarized,then typical applications are discussed by exemplifying specific synthesis examples.In addition,this review offers insights into future developments for advanced task-specific hollow structured porous materials prepared by the CNP strategy.
In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: first, hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator, and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally, the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process, meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously. The structures of the obtained functional hollow carbon spheres were characterized by TEM, XRD, and TG. As an example, Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.
Qiang SunGuanghui WangWencui LiXiangqian ZhangAnhui Lu