The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The results show that the wear rate of the rheocast alloy is lower than that of the alloy produced by conventional casting process under the same applied load. The fine particle-likeδ-Al4(Fe,Mn)Si2 and polygonalα-Al15(Fe,Mn)3Si2 phases help to improve the wear resistance of rheocast alloys. As the volume fraction of fine Fe-bearing compounds increases, the wear rate of the rheocast alloy decreases. Moreover, the wear rate of rheocast alloy increases with the increase of applied load from 50 to 200 N. For the rheocast alloy with 3% Fe, oxidation wear is the main mechanism at low applied load (50 N). At higher applied loads, a combination of delamination and oxidation wear is the dominant wear mechanism.
Metal-matrix composites reinforced with shape memory alloys (SMA, including long fiber, short fiber, and particle) are "intelligent materials" with many special physical and mechanical properties, such as high damping property, high tensile strength, and fatigue resistance. In this review article, the fabrication method, microstructure, interface reaction, modeling, and physical and mechanical properties of the composites are addressed. Particular emphasis has been given to (a) fabrication and microstructure of aluminum matrix composites reinforced with SMAs, and (b) shape memory effect on the physical and mechanical properties of the composites. While the bulk of the information is related to aluminum matrix composites, important results are now available for other metal-matrix composites.
Carbon materials, including carbon fibers, graphite, diamond, carbon foams, carbon nanotubes, and graphene, are attractive reinforcements for aluminum matrix composites due to their excellent mechanical and/or physical properties as well as light weight. Carbon materials reinforced aluminum (C/Al) composites are promising materials in many areas such as aerospace, thermal management, and automobile. However, there are still some challenging problems that need to be resolved, such as interfacial reactions, low wettability, and anisotropic properties. These problems have limited the use of these composites. This review mainly focuses on the categories, fabrication processes, existing problems and solutions, coatings and interfaces, challenges and opportunities of C/Al composites so as to provide a useful reference for future research.
Compared to the micro-sized particle-reinforced metal matrix composites, the nano-sized particle-reinforced metal matrix composites possess superior strength, ductility, and wear resistance, and they also exhibit good elevated temperature properties. Therefore, the nano-sized particle-reinforced metal matrix composites are the new potential material which could be applied in many industry fields. At present, the nano-sized particle-reinforced metal matrix composites could be manufactured by many methods. Different kinds of metals, predominantly A1, Mg, and Cu, have been employed for the production of composites reinforced by nano-sized ceramic particles such as carbides, nitrides, and oxides. The main drawbacks of these synthesis methods are the agglomeration of the nano-sized particles and the poor interface between the particles and the metal matrix. This work is aimed at reviewing the ex situ and in situ manufacturing techniques. Moreover, the distinction between the two methods is discussed in some detail. It was agreed that the in situ manufacturing technique is a promising method to fabricate the nano-sized particle-reinforced metal matrix composites.
Powder metallurgy (PM) is one of the most applied processes in the fabrication of metal matrix composites (MMCs). Recently, a novel PM strategy called flake PM was developed to fabricate MMCs with nano-laminated or hierarchical architectures. The name "flake PM" was derived from the use of flake metal powders, which could benefit the uniform dispersion of reinforcements in the metal matrices and thus result in balanced strength and ductility. Flake PM has been proved to be successful in the dispersion of nano aluminum oxides, carbon nanotubes, graphene nano-sheets, and microsized B4C particles in aluminum or copper matrix. This paper reviews the technique and mechanism developments of flake PM in previous studies, and foresees the future develop of this new fabricating method.