您的位置: 专家智库 > >

国家自然科学基金(s11172317)

作品数:1 被引量:6H指数:1
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇理学

主题

  • 1篇NONLIN...
  • 1篇SCHEME...
  • 1篇WEIGHT...
  • 1篇EULER_...
  • 1篇WEIGHT...
  • 1篇CONVER...

传媒

  • 1篇Acta M...

年份

  • 1篇2013
1 条 记 录,以下是 1-1
排序方式:
Improvement of Convergence to Steady State Solutions of Euler Equations with Weighted Compact Nonlinear Schemes被引量:6
2013年
The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.
Shu-hai ZHANGXiao-gang DENGMei-liang MAOChi-Wang SHU
共1页<1>
聚类工具0