This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.
A novel grating coupler with a stair-step blaze profile is proposed. The coupler is a CMOS process compatible device and can be used for light coupling in optical communication. The blaze profile can be optimized to obtain a high efficiency of 66.7% for the out-of-plane coupling at the centre wavelength of 1595 nm with a 1 dB bandwidth of 41 nm. Five key parameters of the stair-step blaze grating and their effects on the coupling are discussed for the application in L band telecommunication.
Silicon based optical modulators with improved extinction ratio (ER) of 25 dB were demon- strated on complementary metal oxide semiconductor (CMOS) platform. It was proposed that the effect of optical absorption due to free carriers accumulated in silicon should be considered in the analysis of device configuration. Experimental results presented in this study were identical with the proposed analyses. The modulators were operated with the data transmission rate of 3.2 Gbps.