基于集合卡尔曼滤波和通用陆面模型(CLM1.0)发展了一个地表温度的同化系统。这个系统同化了MODIS温度产品,并将MODIS的叶面积指数引入CLM模型中,主要用于改进地表水热通量的估算精度。将CLM输出的地表温度与MODIS地表温度建立关系,并作为同化系统的观测算子。将MODIS地表温度与实测地表温度进行了比较,将其均方差(Root Mean Square Error,RMSE)作为观测误差。选取3个美国通量网站点(Blackhill、Bondville、Brookings)作为实验数据,结果表明:同化结果中地表温度、显热通量的估算精度均有提高。其中Blackhill站的估算精度改进最大,均方差由81.5W·m-2减小到58.4W·m-2,Bondville站均方差由47.0W·m-2减小到31.8W·m-2,Brookings站均方差由46.5W·m-2减小到45.1W·m-2。潜热通量估算精度在Bondville站均方差由88.6W·m-2减小到57.7W·m-2,Blackhill站均方差由53.4W·m-2减小到47.2W·m-2。总之,结合陆面过程模型同化MODIS温度产品估算地表水热通量是可行的。
We developed a method for analyzing the change in snow cover using MODIS imagery.The method was applied to images of western Sichuan Province,China taken between 2002 and 2008.The model for extracting data on snow cover from MODIS images was created by spectral analysis.The multi-temporal snow layers were used to evaluate the temporal and spatial change in the area under snow cover between 2002 and 2008 using overlay and statistical analysis in ARCGIS.The majority(60.4%) of western Sichuan was rarely covered by snow and only 0.3% was covered by perennial snow in 2002.Snow cover was pri-marily distributed in Garzê and Aba.The area under snow cover was significantly and negatively correlated with the average monthly temperature and rainfall in 2002.The largest area under snow cover was measured in 2006 and the smallest was in 2007.Similarly,the area of snowmelt was the highest in 2006 and lowest in 2007.In general,the elevation of the snow line in-creased throughout the period 2002-2008;however,the elevation decreased in some years.Our results provide an important insight into the distribution of snow in this region,and may be useful for climate modeling and predicting the availability of water resources and the occurrence of floods and droughts.