Schemes integrating inter-carrier interference (ICI) self-cancellation and common phase error (CPE) com- pensation for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems are investi- gated. The purpose of our research is to counteract the impacts of laser phase noise and fiber nonlinearity. We propose two ICI self-cancellation-based CO-OFDM schemes, and adopt a pilot-aided decision feedback (DFB) loop for CPE compensation. The proposed schemes are compared with conventional CO-OFDM schemes at the same spectral efficiency. Simulations show that our schemes can not only enhance laser linewidth tolerance of the CO-OFDM system, but also present strong robustness against fiber nonlinearity.
We present a novel coherent transceiver for optical differential phase-shift keying/differential quadrature phase-shift keying (DPSK/DQPSK) signals based on heterodyne detection and electrical delay interferometer. A simulation framework is provided to predict a theoretical sensitivity level for the reported scheme. High sensitivity of –45.18 dBm is achieved for 2.5-Gb/s return-to-zero (RZ)-DPSK signal, and high sensitivities of –36.83 dBm (I tributary) and –35.90 dBm (Q tributary) are observed for 2.5-GBaud/s RZ-DQPSK signal in back-to-back configuration. Transmission for both signals over 100 km is also investigated. Experimental results are discussed and analyzed.
We propose a blind quadrature imbalance (QI) compensation algorithm based on the statistical properties of I and Q signals in a receiver. The algorithm estimates the QI parmneters of a receiver by calculating the mean, variance, and correlation coefficient of I and Q components. Then, the estimated imbalance parameters are adopted to compensate for the QI in the receiver. Simulation results show that the Q factor is considerably optimized by the application of the QI compensation algorithm in an 80-Gb/s Pol- Mux coherent optical quadrature phase-shift keying (CO-QPSK) system. Compared with conventional algorithms, the proposed algorithm exhibits better performance when the phase deviation from QI exceeds ±15°.
Because of explosive growth in Internet traffic and high complexity of heterogeneous networks, improving the routing and wavelength assignment (RWA) algorithm in underlying optical networks has become very important. Where there are multiple links between different the node pairs, a traditional wavelength-assignment algorithm may be invalid for a wavelength-switched optical networks (WSON) that has directional blocking constraints. Also, impairments in network nodes and subsequent degradation of optical signals may cause modulation failure in the optical network. In this paper, we propose an RWA algorithm based on a novel evaluation model for a WSQN that has multiple constraints. The algorithm includes comprehensive evaluation model (CEM) and directional blocking constraint RWA based on CEM (DB-RWA). Diverse constraints are abstracted into various constraint conditions in order to better assign routing and wavelength. We propose using the novel CEM to optimize routing according to an assessed value of constraints on transmission performance. This eliminates the effects of physical transmission impairments in a WSON. DB-RWA based on CEM abstracts directional blocking conditions in multiple links between network nodes into directional blocking constraints. It also satisfies rigorous network specifications and provides flexibility, scalability, and first-fit rate for the backbone, especially in multiple links between WSON nodes.
Hui YangYongliZhaoShanguo HuangDajiang WangXuping CaoXuefeng Lin
A simple design of hybrid wavelength division multiplexed/time division multiplexed passive optical network (WDM/ TDM-PON) is demonstrated for the high capacity next generation access (NGA) network, having advantages of both WDM and TDM based PON techniques. A 10 Gbit/s differential quadrature phase shift keying (DQPSK) data signal is used at optical line terminal (OLT) for downstream, whereas a 2.5 Gbit/s inverse return-to-zero (IRZ) data signal with high extinction ratio is used for upstream signal by intensity re-modulation of downstream signal, no additional laser is used at optical network unit (ONU). Simulation results verify that aggregated 100 Gbit/s downstream transmissions of 10 DQPSK channels and aggregated 25 Gbit/s upstream transmission of 10 IRZ channels, using spectrally-efficient 50 GHz channel spacing, can be successfully achieved over a distance of 20 km with less than 1 dB transmission power penalties and improved receiver sensitivity.
KHAN Ahmed MuddassirZHANG JieZHAO Yong-liGAO Guan-junCHEN SaiWANG Dao-bin
We demonstrate a novel 40-Gb/s transmission system over a 10×101-km standard single mode fiber (SSMF) loop. This system features polarization multiplexed quadrature phase shift keying (PolMux-QPSK), lowvoltage modulation of 2-V peak-to-peak signal amplitude, and home-made 90° optical hybrid with singleended digital coherent detection. Any power amplifers before the modulator and balanced detectors are not used. In the case of low-voltage modulation, coherent detection is much less sensitive to modulator bias offset than delay interferometer-based demodulation.
An experimental demonstration of an all-optical sampling orthogonal frequency division multiplexing (AOS-OFDM) transmission system with inline chromatic dispersion (CD) compensation is carried out to test the nonlinear influence. With five subcarriers non-return-to-zero (NRZ) modulated, the total bit rate is 50 Gb/s without polarization multiplexing. The receiver end is highly simplified with direct de- tection using optical Fourier transform filter. After transmission in 160-km standard single-mode fiber (SSMF) link with 130-ps/nm residual CD, an optimum input optical power for the system performance is achieved.