您的位置: 专家智库 > >

国家自然科学基金(60932001)

作品数:6 被引量:16H指数:3
相关作者:吴健康孙树岩陈江王才丰刘霏更多>>
相关机构:中国科学院研究生院中国科学院大学中国科学院自动化研究所更多>>
发文基金:国家自然科学基金中国博士后科学基金国家高技术研究发展计划更多>>
相关领域:自动化与计算机技术医药卫生机械工程电子电信更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 2篇自动化与计算...
  • 2篇医药卫生
  • 1篇机械工程
  • 1篇电子电信

主题

  • 2篇KINEMA...
  • 1篇运动捕获
  • 1篇智能感知
  • 1篇四元数
  • 1篇网络
  • 1篇微型传感器
  • 1篇粒子滤波
  • 1篇滤波
  • 1篇康复
  • 1篇康复训练
  • 1篇估计方法
  • 1篇关节
  • 1篇关节角
  • 1篇感器
  • 1篇感知
  • 1篇贝叶斯
  • 1篇贝叶斯网
  • 1篇贝叶斯网络
  • 1篇SIGNAL...
  • 1篇STO

机构

  • 2篇中国科学院研...
  • 1篇帝国理工学院
  • 1篇中国科学院自...
  • 1篇中国科学院大...

作者

  • 3篇吴健康
  • 1篇冀连营
  • 1篇陈江
  • 1篇黄志蓓
  • 1篇孙树岩
  • 1篇张志强
  • 1篇刘霏
  • 1篇王才丰

传媒

  • 1篇中国医疗器械...
  • 1篇电子与信息学...
  • 1篇计算机研究与...
  • 1篇Contro...
  • 1篇Scienc...
  • 1篇Journa...

年份

  • 1篇2013
  • 1篇2012
  • 2篇2011
  • 2篇2010
6 条 记 录,以下是 1-6
排序方式:
多微型传感器自适应信息融合姿态估计方法被引量:5
2010年
融合微型惯性和磁传感器数据能够用于实时跟踪人体肢体运动、或估计某一运动刚体姿态.这里,三维加速计被用来测量传感器坐标系下的重力向量,用于确定相对于水平面的方向;三维磁力计测量得到传感器坐标系下的磁场强度向量,用来确定垂直轴上的旋转;三维陀螺仪测量角速度,通过积分可以得到角度.重力向量受人体运动加速度的干扰,磁场强度受周围环境磁感物质的干扰,而角速度在积分过程中也会引入随时间增长的漂移,所以需要融合这3种观测量.提出了一种自适应Kalman滤波的姿态估计算法AKF,通过加速度与磁场强度计算得到的姿态来做观测量与角速度融合,将非线性观测方程线性化,从而降低了计算复杂度;磁场的干扰不会影响Pitch和Roll两个角的估计;而对于运动加速度的干扰,通过自适应调整滤波器中的观测噪声协方差矩阵来抵除.算法的稳定性和精确性在实验中得到了有效验证.
陈江孙树岩吴健康
关键词:四元数
Wearable sensors for 3D upper limb motion modeling and ubiquitous estimation被引量:5
2011年
Human motion capture technologies are widely used in interactive game and learning, animation, film special effects, health care, and navigation. Because of the agility, upper limb motion estimation is the most difficult problem in human motion capture. Traditional methods always assume that the movements of upper arm and forearm are independent and then estimate their movements separately; therefore, the estimated motion are always with serious distortion. In this paper, we propose a novel ubiquitous upper limb motion estimation method using wearable microsensors, which concentrates on modeling the relationship of the movements between upper arm and forearm. Exploration of the skeleton structure as a link structure with 5 degrees of freedom is firstly proposed to model human upper limb motion. After that, parameters are defined according to Denavit-Hartenberg convention, forward kinematic equations of upper limb are derived, and an unscented Kalman filter is invoked to estimate the defined parameters. The experimental results have shown the feasibility and effectiveness of the proposed upper limb motion capture and analysis algorithm.
Zhang, Zhiqiang Wong, Wai Choong Wu, Jiankang
A customized model for 3D human segmental kinematic coupling analysis by optoelectronic stereophotogrammetry被引量:1
2010年
The study of three-dimensional human kinematics has significant impacts on medical and healthcare technology innovations. As a non-invasive technology, optoelectronic stereophotogrammetry is widely used for in-vivo locomotor evaluations. However, relatively high testing difficulties, poor testing accuracies, and high analysis complexities prohibit its further employment. The objective of this study is to explore an improved modeling technique for quantitative measurement and analysis of human locomotion. Firstly, a 3D whole body model of 17 rigid segments was developed to describe human locomotion. Subsequently, a novel infrared reflective marker cluster for 17 body segments was constructed to calibrate and record the 3D segmental position and orientation of each functional body region simultaneously with high spatial accuracy. In addition, the novel calibration procedure and the conception of kinematic coupling of human locomotion were proposed to investigate the segmental functional characteristics of human motion. Eight healthy male subjects were evaluated with walking and running experiments using the Qualisys motion capture system. The experimental results demonstrated the followings: (i) The kinematic coupling of the upper limbs and the lower limbs both showed the significant characteristics of joint motion, while the torso motion of human possessed remarkable features of segmental motion; (ii) flexion/extension was the main motion feature in sagittal plane, while the lateral bending in coronal plane and the axial rotation in transverse plane were subsidiary motions during an entire walking cycle regarding to all the segments of the human body; (iii) compared with conventional methods, the improved techniques have a competitive advantage in the convenient measurement and accurate analysis of the segmental dynamic functional characteristics during human locomotion. The modeling technique proposed in this paper has great potentials in rehabilitation engineering as well as ergonomics and biomimetic engineering
ZHAO GuoRuREN LeiTIAN LiMeiQIAN ZhiHuiWANG LeiREN LuQuan
Automatic detection of respiratory rate from electrocardiogram,respiration induced plethysmography and 3D acceleration signals被引量:3
2013年
Respiratory monitoring is increasingly used in clinical and healthcare practices to diagnose chronic cardio-pulmonary functional diseases during various routine activities.Wearable medical devices have realized the possibilities of ubiquitous respiratory monitoring,however,relatively little attention is paid to accuracy and reliability.In previous study,a wearable respiration biofeedback system was designed.In this work,three kinds of signals were mixed to extract respiratory rate,i.e.,respiration inductive plethysmography(RIP),3D-acceleration and ECG.In-situ experiments with twelve subjects indicate that the method significantly improves the accuracy and reliability over a dynamic range of respiration rate.It is possible to derive respiration rate from three signals within mean absolute percentage error 4.37%of a reference gold standard.Similarly studies derive respiratory rate from single-lead ECG within mean absolute percentage error 17%of a reference gold standard.
刘官正吴丹梅占勇朱青松王磊
关键词:ELECTROCARDIOGRAM
移动数字康复被引量:2
2012年
基于人体传感网络的智能感知技术,为康复提供了泛在的数字化和定量化评估方法,实时交互式的可视化和游戏化训练方式,使患者自己看到康复效果;网络化的管理方式使康复师可以远程指导。这种可移动的泛在康复技术和系统将对物理康复产生深远影响。本文以心脏康复和运动康复为例,讨论数字化运动康复技术。
吴健康冀连营王才丰刘霏
关键词:智能感知运动捕获康复训练
髋关节角多模型贝叶斯动态估计
2011年
步态分析在健康监测等领域中有着广泛的应用,精确估计髋关节角是步态分析的前提。但是大腿运动的高度非线性和不确定性,以及微型传感器测量噪声的不稳定性等诸多因素,基于微型惯性传感器的髋关节角精确估计面临着巨大的挑战。该文提出利用混合动态贝叶斯网络、多运动模型和噪声模型对髋关节角的非线性变化和测量噪声的改变进行建模,然后基于穿戴在大腿上的微型加速度传感器获得的测量值,通过高斯粒子滤波算法估计髋关节角度。实验结果表明该方法能够有效提高髋关节角的估计精度。
张志强黄志蓓吴健康
关键词:贝叶斯网络粒子滤波
共1页<1>
聚类工具0