In order to understand the effect of surface chemical groups on the immobilized species, Au-containing imidazolium-based ionic liquid (IL) [Bmim][AuCl4] was intentionally immobilized on polystyrene (PS) submicrospheres (d~300 nm) with a very small surface area (4-10 m2/g), which possess carboxyl-moiety (COONa or COOH) on the surface. The behavior of immobilized [Bmim][AuCl4 ] on the two types of submicrospheres was investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD). It was revealed that the melting points (Tm) of [Bmim][AuCl4 ] that had been immobilized on PS-COONa and PS-COOH submicrospheres were decreased by 2.7 and 4.1℃, respectively. The interaction mechanism between the IL and submicrosphere surface moieties was further analyzed by X-ray absorption fine structure (XAFS) analysis. The data indicated that the coordination environment of Au species changed markedly when [Bmim] [AuCl4] was immobilized on the surfaces of PS-COONa and PS-COOH submicrospheres, as illustrated by the decrease in white line peak intensity. The effect of surface COOH groups on Tm depression and the white line peak intensity of the XANES spectrum is more pronounced than that of COONa groups, most likely due to the possible hydrogen bond formation between the COOH group and [Bmim]+.
HE YaXingFU HaiYingLI ChengJI XiangGE XueWuZOU YangJIANG ZhengXU HongJieWU GuoZhong
This study investigates the effect FeCl3 on the radiation stability of the ionic liquid,1-butyl-3-methylimidazolium chloride(BmimCl) over a wide dose range of 0 to 1000 kGy under γ-ray radiation.The ionic liquid species,BmimFeCl4,was formed by adding FeCl3 into BmimCl.The results showed that the presence of FeCl4-significantly improved the radiation resistance of BmimCl,wherein the effect was more pronounced at higher FeCl4-content.Meanwhile,under irradiation,Fe(II) was generated from Fe(III),which was reduced by solvated electron.In addition,the concentration of Fe(II) increased with low level of absorbed dose,but leveled off at higher doses.Moreover,the radiation yield of the solvated electrons of BmimCl was further estimated at approximately 0.358±0.01 μmol/J in BmimCl-7 mol% FeCl3 system.
The radiolysis behavior of neat pyridinium ionic liquids (ILs) and their aqueous solutions was investigated using nanosecond pulse radiolysis techniques. Radiolysis of the ionic liquids, such as N-butylpyridinium tetrafluoroborate (BuPyBF4 ), resulted in the formation of solvated electrons and organic radicals. Solvated electrons reacted with the pyridinium moiety to produce a pyridinyl radical, which can transfer electrons to various acceptors. The electron-transfer rate constants of the solvent-derived butylpyridinyl radicals in BuPyBF 4 and in several compounds (for example, duroquinone, 4,4′-pyridine, benzophenone, and 1,1′- dimethyl-4,4′-bypyridinium dichloride) (k of the order 10 8 L/(mol s) were lower than those measured in water and in i-PrOH but were significantly higher than the diffusion-controlled rate constants estimated based on viscosity. The electron-transfer rate constants in neat BuPyBF 4 were one order of magnitude faster than the diffusion-controlled values. This finding suggests that Bu- PyBF 4 acts not only as solvent but also as active solute, such as in solvent-mediated reactions. These reactions result in electrons reaching their final destinations via intervening pyridinium groups without requiring the diffusion of a specific radical.
The reactions of imidazolium-based ionic liquids having different substituent groups on the ring with hydrated electrons (eaq-),hydroxyl radicals (·OH),and sulfate anion radicals (SO4·-) were investigated using nanosecond pulse radiolysis techniques.The spectra of these ionic liquids on reaction with eaq-all exhibited a similar peak at about 320 nm,and a typical peak for eaq-in aqueous ionic liquid solutions.The reaction rate constants for 1,3-disubstituted imidazolium-based ionic liquid hexafluorophosphates (BMIPF 6) with eaq-were deduced to be 10 10 L mol-1s-1,however the values were lower for trisubstituted ionic liquids.For example,the rate constant for 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMMIBF 4) was 5.5×10 9 L mol-1s-1.Imidazolium-based ionic liquids reacted with hydroxyl radicals via adducts to produce a mixture of isomeric OH adducts,and the pk a value of the OH adducts was deduced to be 8.4±0.4 for 1-butyl-3-methylimdazolium tetrafluoroborate (BMIBF 4).Moreover,imidazolium cations were also oxidized by SO4·-to produce bivalent cation radicals,which exhibit a peak at 320 nm,and these rate constants are of the same order of magnitude,i.e.,10 9 L mol-1s-1,except that for 1-(2-hydroxyethyl)-3-methylimdazolium tetrafluoroborate with SO4·-(k=2.8×10 8 L mol-1 s-1).Theoretical calculations were carried out to estimate the structures of the products of reduction by eaq- and the results were related to the experimental data.
The steady-state fluorescence spectra and molecular dynamics simulations were explored to investigate the temperature dependent organization in some imidazolium ionic liquids:1-butyl-3-methylimidazolium hexafluo-rophosphate([bmim][PF6]),1-ethyl-3-methylimidazolium ethylsulfate([emim][EtSO4]) and 1-butyl-3-methylimida-zolium tetrafluoroborate([bmim][BF4]).The pure room temperature ionic liquids(ILs) exhibit a large red shift at more than an excitation wavelength of around 340 nm,which demonstrates the heterogeneous nature of the liquids.Furthermore,the fluorescence spectra of the ionic liquids were found to be temperature-dependent.The emission intensity gradually decreased with increasing temperature for the neat ionic liquids and the mixed solutions of [bmim][BF4]-H2O,which was the special phenomena induced by not only the local structure but also the viscosity.The molecular dynamics simulation further confirms that the structures of ionic liquids are sensitive to the surroun-ding environment because of the aggregation degree of ILs.
FU Hai-yingZHU Guang-laiWU Guo-zhongSHA Mao-linDOU Qiang