您的位置: 专家智库 > >

国家自然科学基金(41240002)

作品数:4 被引量:41H指数:4
相关作者:邹松兵蔡晓慧许宝荣龙爱华陆志翔更多>>
相关机构:中国科学院中国水利水电科学研究院兰州大学更多>>
发文基金:国家自然科学基金公益性行业科研专项山西省科技重大专项更多>>
相关领域:天文地球水利工程环境科学与工程更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 3篇天文地球
  • 2篇水利工程
  • 1篇环境科学与工...

主题

  • 1篇月降水
  • 1篇适应性
  • 1篇水文
  • 1篇水文过程
  • 1篇水文特征
  • 1篇同位素
  • 1篇景观
  • 1篇景观带
  • 1篇降水
  • 1篇RIVER_...
  • 1篇SIMULA...
  • 1篇SOIL
  • 1篇TAO
  • 1篇TRMM
  • 1篇WATER
  • 1篇ECO
  • 1篇EQUATI...
  • 1篇EXAMPL...
  • 1篇EVAPOT...
  • 1篇MAINST...

机构

  • 2篇中国科学院
  • 1篇兰州大学
  • 1篇山西大学
  • 1篇中国水利水电...

作者

  • 2篇邹松兵
  • 1篇陆志翔
  • 1篇龙爱华
  • 1篇杨永刚
  • 1篇许宝荣
  • 1篇尹振良
  • 1篇肖洪浪
  • 1篇胡晋飞
  • 1篇蔡晓慧

传媒

  • 1篇环境科学
  • 1篇兰州大学学报...
  • 1篇Scienc...
  • 1篇Journa...

年份

  • 1篇2015
  • 1篇2014
  • 2篇2013
4 条 记 录,以下是 1-4
排序方式:
A case study of regional eco-hydrological characteristics in the Tao River Basin, northwestern China, based on evapotranspiration estimated by a coupled Budyko Equation-crop coefficient approach被引量:5
2015年
In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed the spatio-temporal characteristics of this diverse eco-hydrological basin from 2001–2010. The results suggest that the single crop coefficient method based on leaf area index captures better spatial and temporal dynamics of the regional ET than did the Budyko Equation method. The rising temperature was the main reason for the increasing ET in the Tao River Basin during 2001–2010. Areas with high ET efficiency were distributed mainly in the areas where the vegetation coverage was high, and a lower runoff coefficient responded. The estimated spatial patterns of ET allowed an improved understanding of the eco-hydrological processes within the Tao River Basin and the method used might be generalized as a reference for future regional-scale eco-hydrological research.
LI ChangBinZHANG XueLeiQI JiaGuoWANG ShuaiBingYANG LinShanYANG WenJinZHU GaoFengHAO Qiang
关键词:EVAPOTRANSPIRATIONECO-HYDROLOGY
TRMM月降水产品在西北内陆河流域的适应性定量分析被引量:19
2013年
利用1998-2008年56个气象台站降水资料,结合TRMM月降水产品,通过对TRMM3B43降水数据在不同气候区、不同时空尺度的精度对比分析,探讨了卫星遥感反演降水产品在中国西北内陆河流域的适应性.结果表明:TRMM探测的月降水数据与实测月降水数据在整体上具有较好的一致性和线性相关性,相关系数为0.76,效率系数为0.58,其探测的降水量比观测值略大;TRMM在高原气候区月降水量的探测效果要优于在西风带区的;TRMM数据所反映的降水量的年内变化过程和实测降水量结果基本一致,但在具体的量上有一定的差异,表现为对降水相对集中的5-9月低估实测降水量,而在降水较少的10月-次年4月高估实测降水量,反映了TRMM对较大强度降水量的探测能力不足.流域多年平均降水量呈现南、北部大,中部小的格局,降水量的高值中心主要出现在高山地区,高达300 mm;而受西风环流影响的塔里木盆地东南面的且末-若羌一带、吐鲁番盆地和受高原区影响的柴达木盆地为极端干旱少雨区,降水量均不足100 mm.
蔡晓慧邹松兵陆志翔许宝荣龙爱华
关键词:月降水
景观带尺度高寒区水文特征时空变化规律研究被引量:10
2013年
目前高寒区景观带尺度水文规律的研究还非常薄弱.同位素技术被用来甄别高寒区不同景观带冰川、积雪、冻土、地表水、地下水和降雨等对径流的贡献组合及其时空变化规律,旨在揭示各景观带的水文规律.结果表明马粪沟流域雨季降雨量大,温度效应显著,易发生再次蒸发,致使各水体δ18O和δD较高.干季气温低,降水多为固态,蒸发弱,不易受到再次蒸发和周围水汽交换影响,致使各水体δ18O和δD相对偏负.降雨和各水体在雨季富集重D和18O,干季较贫重同位素,存在季节效应.降雨存在高程效应,δ18O=-0.005 2 H-8.951,R=-0.917 2;δD=-0.018 5 H-34.873,R=-0.876 3.流域各景观带各水体在雨季和干季均不存在高程效应,是因为出山径流均非以降雨直接补给为主,受冰川、积雪和冻土等冻融过程影响,降水、融水、地表水与地下水等相互转化,导致同位素特征发生变化,混合和蒸发效应是其同位素变化的主要控制因素.
杨永刚胡晋飞肖洪浪邹松兵尹振良
关键词:同位素水文过程
Simulation of hydrological processes of mountainous watersheds in inland river basins: taking the Heihe Mainstream River as an example被引量:7
2014年
The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.
ZhenLiang YINHongLang XIAOSongBing ZOURui ZHUZhiXiang LUYongChao LANYongPing SHEN
共1页<1>
聚类工具0