The influence of heat treatment(T6) on the ambient temperature dry sliding wear behavior of the extruded AZ91 alloy treated with Y using a pin-on-disc apparatus was investigated. Wear rates and friction coefficients were measured within a load range of 5-70 N at a sliding speed of 0.188 m/s over a constant sliding distance of 226.195 m. Worn surfaces and debris were examined using a scanning electron microscope equipped with an energy dispersive spectrometer. The experimental results revealed that, as applied load was increased, the alloy wear rates increased, but the friction coefficients decreased. Four chief operating wear mechanisms were observed, i.e., abrasion, oxidation, delamination and plastic deformation. The extruded AZ91 alloy treated with Y exhibited better wear resistance by adopting T6, which was mainly due to large amounts of fine Mg_(17)Al_(12) distributed in the grains and the resulting modified strength and micro-hardness.
By means of Miedema formation enthalpy model with Toop model, the excess free-energy, enthalpies of formation, excess entropies and activity values of all components of Mg-A1-Y ternary alloy were calculated with computer programming. The experimental results show that enthalpies of formation, excess free- energy and excess entropies of the ternary alloy are negative in the whole content range, the minimum values at 1 123 K are all obtained at x_Al=55%, x_y=45%, X_Mg=0%, which are -37.969, -30.961 kJ/mol and -6.24 J/(mol-k) respectively. Activity curves show that the activity values of A1 and Y in Mg-A1-Y ternary alloy rapidly decrease with the decrease of molar fraction, the values of which are very small when the molar fraction decreases to 0.4. It means that there is a strong interaction between A1 and Y and stable compounds can be form in the Mg-A1-Y ternary alloy system.
The effects of solution treatment on the evolution of the second phases and mechanical properties of7075Al alloy werestudied with scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential scanning calorimetry(DSC),hardness and tensile tests.The results show that Mg(Zn,Cu,Al)2phases gradually dissolve into the matrix,yet the size andmorphology of Al7Cu2Fe phase exhibit no change with the increase of the solution treatment temperature and time due to its highmelting point.When the solution treatment temperature and time continue to increase,the formation of coarse black Mg2Si particlesoccurs.Compared to the as-cast alloy,the microhardness,tensile strength,and elongation of the sample under solution heat treatmentat460°C for5h are increased by55.1%,40.9%and109.1%,respectively.This is because the eutectic Mg(Zn,Cu,Al)2phases almostcompletely dissolve and basically no coarse black Mg2Si particles are formed.
The effects of Sm additions (0, 0.5 wt.%, 1.0 wt.%and 1.5 wt.%) on the eutectic Si and β-Al5FeSi phases of ADC12 as-cast alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and differential thermal analysis (DTA). The experimental results showed that Sm was an effective modifying agent for the eutectic Si of ADC12 alloy, when 1.0 wt.%-1.5 wt.%Sm was added to the alloy, the coarse acicular eutectic Si was modified into fine particle or short rod structure. Moreover, the appropriate addition of Sm (about 1.0 wt.%) had marked effects on shortening the length of needle-likeβ-Al5FeSi phase. Whereas, Sm was less effective on modifying the needle-likeβ-iron to the Chinese script or sphericalα-iron phase. The modification mecha-nism was also discussed.
The effects of heat treatment and strontium (SO addition on the microstructure and mechanical properties of ADC12 alloys were investigated, and two-stage solution treatment was introduced. The results indicated that the addition of Sr obviously refined the microstructure of ADC12 alloys. When 0.05 wt% Sr was added into the alloy, the eutectic Si phase was fully modified into fine fibrous structure; a-A1 and fl-A15FeSi phases were best refined; and the eutectic AlzCu phase was modified into block-like AlzCu phase that continuously distributed at the grain boundary. The ultimate tensile strength (UTS) (270.63 MPa) and elongation (3.19%) were increased by 51.2% and 73.4% respectively compared with unmodified alloys. After the two-stage solution treatment (500 ~C, 6 h+520 ~C, 4 h), for 0.05 wt% Sr modified ADC12 alloys, the Si phases transformed into fine particle structure and AlzCu phases were fully dissolved. The peak hardness value of the alloys processed by the two-stage solution treatment was increased by 8.3% and 6.8% respectively compared to solution treatment at 500 ~C and 520 ~C. After the aging treatment (175 ~C, 7 h), the hardness and UTS were increased by 38.73% and 13.96% respectively when compared with the unmodified alloy.