Reaction temperature is one of the key parameters in the synthesis of metal-organic frameworks (MOFs). Though there is no convergence with regard to the various experimental parameters, reaction temperature has been found to have remarkable influence on the formation and structure of MOFs, especially toward the control of topology and dimensionality of the MOF structures. Theoretically, the reaction temperature affects directly the reaction energy barrier in reaction thermodynamics and the reaction rate in the reaction kinetics. This review aims to show the influence of reaction temperature on crystal growth/assembly, structural modulation and transformation of MOFs, and to provide primary information and insights into the design and assernblv of desired MOFs.
Hierarchical flower-like architectures of[Ni_3(BTC)_2·12H_2O](BTC^3=benzene-1,3,5-tricarboxylate) were successfully prepared by a simple solution-phase method under mild conditions without any template or surfactant.Phase-pure porous NiO nanocrystals were obtained by annealing the Ni-BTC complex without significant alteration in morphology.The product was characterized by X-ray diffraction techniques,field-emission scanning electron microscopy(FESEM).transmission electron microscopy(TEM) and high-resolution TEM(HRTEM).The catalytic effect of the NiO product was investigated on the thermal decomposition of ammonium perchlorate(AP) and it was found that the annealed NiO product has higher catalytic activity than the commercial NiO.
A new metal complex [MnL2](NO3)2.CH3CN (1) was synthesized by reaction of 4'-4-(],2,4-triazol-]-yl)- phenyl-2,2':6',2"-terpyridine (L) with manganese nitrate. The structure of the complex was determined by X-ray crystallography. The results of UV-vis studies showed that the complex exhibits colorimetric sensing ability for Fe3~, which can be observed by naked eye.