Numerical simulations of 3D turbulent flow in a large-bore axial-flow pump coupled with half-elbow suction sump were perlbrmed by using CFD approach. The numerical model and velocity and pressure distributions in entire flow passage were presented. The obvious backflow in half-elbow suction sump and strong flow nonuniformity at suction sump outlet were observed, whereas these phenomena were not observed in existing studies performed for a separate suction sump by either experimental or numerical approach. This result indicates that the interaction between half-elbow suction sump and impeller has significant effect on the flow distribution in the pump passage. The change of pump efficiency caused by the interaction was discussed,
WANG Fu-jun LI Yao-jun CONG Guo-hui WANG Wen-e WANG Hai-song
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
A finite element model used to simulate the dynamics with continuum and discontinuum is presented. This new approach is conducted by constructing the general contact model. The conventional discrete element is treated as a standard finite element with one node in this new method. The one-node element has the same features as other finite elements, such as element stress and strain. Thus, a general finite element model that is consistent with the existed finite element model is set up. This new model is simple in mathematical concept and is straightforward to be combined into the existing standard finite element code. Numerical example demonstrates that this new approach is more effective to perform the dynamic process analysis in which the interactions among a large number of discrete bodies and continuum objects are included.
WANG Fujun1, LI Yaojun1, Han K.2 & Feng Y.T.2 1. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China
The interaction of flow through the inducer and impeller of an axial-flow pump equipped with an inducer has significant effect on its performance. This article presents a recent numerical investigation on this topic. The studied pump has an inducer with 3 blades mounted on a conical hub and a 6-blade impeller. The blade angle of the impeller is adjustable to generate different relative circumferential angles between the inducer blade trailing edge and the impeller blade leading edge. A computational fluid dynamics code was used to investigate the flow characteristics and performance of the axial-flow pump. For turbulence closure, the RNG k-ε model was applied with an unstructured grid system. The rotor-stator interaction was treated with a Multiple Reference Frame (MRF) strategy. Computations were performed in different cases: 7 different relative circumferential angles ( Δθ ) between the inducer blade trailing edge and the impeller blade leading edge, and 3 different axial gaps (G) between the inducer and the impeller. The variation of the hydraulic loss in the rotator was obtained by changing Δθ . The numerical results show that the pressure generated is minimum in the case of ( G = 3%D), which indicates that the interference between inducer and impeller is strong if the axial gap is small. The pump performances were predicted and compared to the experimental measurements. Recommendations for future modifications and improvements to the pump design were also given.
The features of unsteady flow such as pressure variation and fluctuation in a large hydraulic turbine usually lead to the instability of operation. This article reports the recent in site investigation concerning the characteristic frequencies in pressure fluctuation, shaft torsional oscillation and structural vibration of a prototype 700 MW Francis turbine unit. The investigation was carried out for a wide load range of 200 MW-700 MW in the condition of water head 57 m-90 m. An extensive analysis of both time-history and frequency data of these unsteady hydraulic behaviours was conducted. It was observed that the pressure fluctuation in a draft tube is stronger than that in upstream flow passage. The low frequency with about one third of rotation frequency is dominative for the pressure fluctuation in part load range. Also the unsteady features of vibration of head cover and torsional oscillation of shaft exhibited the similar features. Numerical analysis showed that the vibration and oscillation are caused by vortex rope in the draft tube. In addition, a strong vibration with special characteristic frequency was observed for the head cover in middle load range. The pressure fluctuation in the draft tube with the same frequency was also recorded. Because this special vibration has appeared in the designed normal running condition, it should be avoided by carefully allocating power load in the future operation.
WANG Fu-junLI Xiao-qinMA Jia-meiYANG MinZHU Yu-liang