The NCEP/NCAR reanalysis data are used to investigate the role of cold air and moisture characteristics during the evolution of two cases of tropical cyclones (Nanmadol and Irma) which made landfall on China in wintertime. The results are shown as follows. (1) The East Asia trough steered the cold air into the tropical ocean in early winter. The tropical cyclones moved in opposite directions with a high moving out to sea and the enhancement of the pressure gradient at the periphery played a role in maintaining and strengthening the intensity of the storms. The intrusion of weak cold air into the low levels of the tropical cyclones strengthened them by improving the cyclonic disturbance when they were still over the warm sea surface. When the cold air was strong enough and intruded into the eyes, the warm cores were damaged and stuffed before dissipation. (2) The tropical cyclones were formed in a convergence zone of moisture flux and their development could enhance the disturbance of water vapor convergence, thus strengthening the moisture convergence zone. However, when they were outside the moisture zone, the storms could not gain sufficient water vapor and became weak. There were no belts of strong moisture transportation during the wintertime tropical cyclone processes.
Based on tropical cyclone datasets from Shanghai Typhoon Institute of China Meteorological Administration,the National Centers for Environmental Prediction (NCEP,USA) reanalysis data and the rainfall records from 743 stations in China,the impacts of cyclogenesis number over the South China Sea and the western Pacific are studied on the 30-60-day oscillations in the precipitation of Guangdong during the flooding period.The year with more-than-normal (less-than-normal) tropical cyclogenesis is defined as a 'high year' ('low year').In light of the irregular periodic oscillations,the method used to construct the composite life cycle is based on nine consecutive phases in each of the cycles.Phases 1,3,5,and 7 correspond to,respectively,the time when precipitation anomalies reach theminimum,a positive transition (negative-turning-to-positive) phase,the maximum,and a negative transition phase.The results showed that the precipitation of the 30-60-day oscillations is associated with the interaction between a well-organized eastward propagation system from the Arabian Sea/Bay of Bengal and a westward-propagating system (with cyclonic and anticyclonic anomalies in the northwest-southeast direction) from the South China Sea to western Pacific during the high years,whereas the precipitation is affected during a low year by the circulation over the South China Sea and western Pacific (with cyclonic and anticyclonic anomalies in the northeast-southwest direction).During the high year,the warm and wet air mass from the ocean to the west and south are transported to Guangdong by westerly anomalies and an enclosed latitudinal cell,which ascends in the Northern Hemisphere low latitudes and descends in the Southern Hemisphere low latitudes.During the low year,the warm and wet air mass from the ocean to the south is transported to Guangdong by southwesterly wind anomalies and local ascending movements.Because the kinetic energy,westerly,easterly shift,vertical velocity and vapor transportation averaged over (109-119° E,10-20° N) i
基于GRAPES(Global/Regional Assimilation and Predition System)三维变分同化系统,设计在6小时内分别应用三小时一次和逐小时的台风定位和定强信息对台风进行多次BDA(Bogus Data Assimilation)同化,在多次BDA中只同化近似程度高的涡旋风分量而近似程度较差的辐散风分量则通过多次调整和协调逐步向涡旋风适应。多次BDA能逐步调整台风位置并且在同化过程中随着台风位置更接近实况,使得台风周围流场更趋合理。采用多次BDA方案对"天鹅"(0907)台风进行数值试验,结果表明多次同化方案能逐步改进台风中心附近的环流场信息,与一次BDA相比,得到的初始场结构更协调,对台风的路径和降水预报也有一定改善。