A facile synthetic strategy was developed for insitu preparation of two-dimensional (2D)highly crystalline tungsten nitride (WN)nanosheets with controllable morphology as oxygen reduction reaction (ORR)catalysts.The dependence of the crystal structure and morphology of WN on K2SO4content,pH,and pyrolysis temperature was thoroughly examined.The electrocatalytic performance of WN toward ORR in an alkaline electrolyte indicated that K+plays an important role in the control of size and shape in the hydrothermal and nitridation process,thereby promoting the formation of plate-like WO3and 2D WN nanosheets.The WN nanosheets,with largely exposed edge sites,provide abundant catalytic active sites and allow fast charge transfer.Furthermore,they exhibit high stability for ORR and methanol tolerance.
lie Zhanglinwei ChenYan LuoYihan ChenMaryam KianiXiaoyang WeiRui LuoGang WangRuilin Wang
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst.
Maryam KianiJie ZhangYan LuoChunping JiangJinlong FanGang WangJinwei ChenRuilin Wang
采用冷凝回流的方法处理活性炭材料,讨论了硫酸与硝酸不同体积比(2:1、1:1、1:2、1:3)处理的活性炭材料对VO2+/VO2+电化学活性的影响.傅里叶变换红外测试表明,通过混酸处理,活性炭材料上只接入了羟基.比表面积仪和循环伏安分别检测了处理前后样品的表面特性及电化学性能.结果表明,VO2+/VO2+在处理后的碳材料上具有较大的活性,当硫酸与硝酸的体积比为1:2时,处理后的碳材料表现出最好的电化学性能,其ΔEp为154 m V,比未处理碳粉的ΔEp减少了3.3倍,氧化峰电流密度为28.24 m A·cm-2,提高了1.4倍,还原峰电流密度为19.73 m A·cm-2,提高了2.1倍.