AZ80 magnesium alloys were deformed at 200,250,300,350 and 400℃ with different deformation degree of 50%,75%, 83%,87%and 90%,respectively.The corrosion properties of different deformed AZ80 samples were studied by galvanic test in 3.5%NaCl solution.The results show that plastic deformation could improve the corrosion resistance of AZ80 alloy;and the corrosion rate of AZ80 deformed at 250℃ with the deformation degree of 83%was the lowest,which was 33%of the as-cast AZ80 alloy.Further studies of the microstructure show that the refined grain size and continuously distribution ofβphase around the grain boundary did have a positive effect on the improvement of corrosion resistance of AZ80 alloys.For AZ80 alloys,the smaller the grain size is,the more homogeneous the structure is,and the better the corrosion resistance is.
Forward extrusion experiments of as-cast AZ31 magnesium alloy were conducted at different temperatures and different extrusion ratios using the as-cast billets with and without homogenizing treatment.The mechanical properties of pre-and post-extrusion of the two kinds of billets were investigated.Experimental results show that the mechanical properties of post-extrusion of the two kinds of billets all are obviously improved compared with those of pre-extrusion.The elongation of post-extrusion using the billet with homogenizing is higher than that without homogenizing,but the tensile strength is lower than that without homogenizing.When the extrusion ratio increases,the elongation and tensile strength of post-extrusion of two kinds of billets all will increase obviously.When the extrusion temperature of billet without homogenizing increases,the tensile strength of post-extrusion will decrease obviously and the elongation of post-extrusion will change to a small extent.For the billet with homogenizing,the tensile strength of post-extrusion will decrease in some sort when extrusion temperature increases.