A1N films were prepared on Si(100) and quartz glass substrates with high deposition rate of 30 nm-min-I at the temperature of below 85 ℃ by the magnetic-filtered cathodic arc ion plating (FCAIP) method. The as-deposited A1N films show very smooth surface and almost no macrodroplets. The films are in amorphous state, and the formation of A1N is confirmed by Nls and A12p X-ray photoelectron spectroscopy (XPS). The XPS depth profile analysis shows that oxygen is mainly absorbed on the A1N surface. The A1N film has A1 and N concentrations close to the stoichiometric ratio with a small amount of A1203. The prepared A1N films are highly transparent over the wave- length range of 210-990 nm. The optical transmission spectrum reveals the bandgap of 6.1 eV. The present technique provides a good approach to prepare large-scale A1N films with controlled structure and good optical properties at low temperature.
Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.