In this paper we first present a CG-type method for inverse eigenvalue problem of constructing real and symmetric matrices M,D and K for the quadratic pencil Q(λ)=λ^(2)M+λD+K,so that Q(λ)has a prescribed subset of eigenvalues and eigenvectors.This method can determine the solvability of the inverse eigenvalue problem automatically.We then consider the least squares model for updating a quadratic pencil Q(λ).More precisely,we update the model coefficient matrices M,C and K so that(i)the updated model reproduces the measured data,(ii)the symmetry of the original model is preserved,and(iii)the difference between the analytical triplet(M,D,K)and the updated triplet(M_(new),D_(new),K_(new))is minimized.In this paper a computationally efficient method is provided for such model updating and numerical examples are given to illustrate the effectiveness of the proposed method.