Eu(TTA)2(phen)(MA) complexes were synthesized, in which MA was introduced as the acidic ligand to increase the fluorescent intensity of the complexes. The complexes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and fluorescent spectra, respectively. Different amounts of rare earth complexes were blended with silicon rubber over the melting point of Eu (TTA) 2 (phen) (MA). Next, a definite amount of 2,5-dimethyl-2, 5-di (tert-butylperoxy) hexane was added as a cross linker to the composite, to get the uncured composites. Subsequently, the composites were vulcanized at 160℃, and silicon rubber-based composites with different contents of the complexes were prepared and their fluorescent properties were observed. The contents of rare earth complexes were 0.96 %, 2.83 %, 4.63 % and 6.36 % (mass fraction), respectively. Moreover, the composites of Eu (TTA) 2 (phen) ( MA )/SiR were measured by SEM, XRD, and fluorescent spectra. The measurement result shows that the fluorescent intensity of uncured rubber is similar to one of the pure rare earth complexes. However, there is no marked change of fluorescent intensity in the uncured rubber when the content of rare earth complexes continues to increase.
A series of fluorescent composites were prepared by blending silicone rubber with Eu(TTA )2(phen)(MA). The influence of mechanical blending temperature on fluorescent intensity of composites and dispersion of rare earth complexes in the SiR matrix were investigated. As for the cured rubber, it is found that its fluorescent intensity is relatively low compared with that of uncured rubber. Low temperature is beneficial to dispersion of Eu(TTA )2(phen)(MA) homogeneously. When the amount of rare earth complexes is low, the fluorescent intensity of composites prepared by mechanical blending method above melting point of Eu(TTA )2(phen)(MA) is much higher than that of composites prepared below melting point.
Two kinds of Eu-complexes, Eu(TTA)2(Phen)(AA) and Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10- phenanthroline, AA=acrylic acid, MA=Maleic anhydride), which combined the excellent fluorescence properties of Eu(TTA)2(Phen)(H2O) and the reactivity of acrylic acid and maleic anhydride with radicals, were synthesized. The two complexes were characterized by elemental analysis, infrared (IR) spectra, and X-ray photoelectron spectroscopy (XPS). Based on the data shown from the fluorescent spectra of the Eu-MA and Eu-AA complexes, the Ωλ (λ=2 and 4) experimental intensity parameters were calculated. The results demonstrated that the Ω2 intensity parameters for the two complexes were smaller than those for the Eu(TTA)2(Phen)(H2O) complex, indicating that a less symmetrical chemical environment existed in the complexes. It implied that the radiative efficiency of the ^5D0 of these two complexes could be enhanced by ligand of MA and AA, respectively. The luminescent lifetime of the Eu-AA (r=-7.26×10^-4 s) or Eu-MA complex (r=-8.12×10^-4 s) was higher than that of the Eu(TTA)2(Phen)(H2O) complex, which was attributed to the substitution of the water molecule (H2O) in Eu(TTA)2(Phen)(H2O) by the MA or AA ligand.
The fluorescent complex Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, MA=Maleic an- hydrider) was synthesized and characterized with elemental analysis, infrared spectrum (IR), scanning electron microscope (SEM), X-ray Diffraction(XRD), differential scanning calorimetry(DSC), and fluorescent measurement. To explore the effect of different physical dispersion state of Eu-complex on the fluorescent property of the Eu-complex/silicon rubber composites, various quantifies of Eu(TTA)2(phen) (MA) were mixed with silicon rubber (SIR) and peroxide to form uncured composites. These composites were vulcanized to obtain cured Eu-complex/SiR composites at 250 ℃, which was higher than the melting-point of Eu-complex. The SEM, XRD, DSC, and the fluorescent measurement of these composites showed that both the complex molecules dispersed in the silicon rubber during the melting process and the parent Eu-complex particles had positive effects on fluorescent property, whereas the re-crystallized Eu-complex particles and the aggregating complexes formed during the melting-process had negative effects on fluorescent property. For the uncured composites, their fluorescent intensities almost did not change with the increasing amount of Eu-complex. Furthermore, for the composites with small content of Eu-complex, their fluorescent intensities decreased significantly after curing, and this difference in fluorescent intensity became smaller as the content of Eu-complex increases.