Lithium-ion capacitors(LICs)could combine the virtues of high power capability of conventional supercapacitors and high energy density of lithium-ion batteries.However,the lack of high-performance electrode materials and the kinetic imbalance between the positive and negative electrodes are the major challenge.In this study,Fe3O4 nanoparticles encapsulated in nitrogen-rich carbon(Fe3O4@NC)were prepared through a self-assembly of the colloidal Fe OOH with polyaniline(PANI)followed by pyrolysis.Due to the well-designed nanostructure,conductive nitrogen-rich carbon shells,abundant micropores and high specific surface area,Fe3O4@NC-700 delivers a high capacity,high rate capability and long cycling stability.Kinetic analyses of the redox reactions reveal the pseudocapacitive mechanism and the feasibility as negative material in LIC devices.A novel LIC was constructed with Fe3O4@NC-700 as the negative electrode and expanded graphene(EGN)as the positive electrode.The wellmatched two electrodes effectively alleviate the kinetic imbalance between the positive and negative electrodes.As a result,Fe3O4@NC-700//EGN LIC exhibits a wide operating voltage window,and thus achieves an ultrahigh energy density of 137.5 W h kg^-1.These results provide fundamental insights into the design of pseudocapacitive electrode and show future research directions towards the next generation energy storage devices.
H+-restacked nanosheets and nanoscrolls peeled from K4Nb6O17 display different structures and surface characters. The two restacked samples with increased surface areas have an amazing visible-light response for the photodegradation of dyes, which is superior to commercial TiO2 (P25) and Nb205. By comparison, H+/nanosheets have a relatively faster photodegradation rate originated from large and smooth basal plane. The work reveals that dye adsorbed on the unfolded nanosheets can effectively harvest sunlight. Due to facile preparation, low-cost and high photocatalytic efficiency, H+/nanosheets and H+/nanoscrolls might be used for the visible light-driven degradation of organic dyes as a substitute for TiO2 in industry.
High energy density and enhanced rate capability are highly sought-after for supercapacitors in today's mobile world.In this work,polyaniline/titanium carbide(MXene)(PANI/Ti3C2Tx)nanohybrid is synthesized through a facile and cost-effective self-assembly of.one-dimensional(10)PANI nanofibers and two-dimensional(20)Ti3C2Tx nanosheets.PANl!Ti3C2Tx delivers greatly improved specific capacitance,ultrahigh rate capability(67%capacitance retention from 1 to 100 A·g^(-1))as well as good cycle stability.Electrochemical kinetic analysis reveals that PANI/Ti3C2Tx is featured with surface capacitance-dominated process and has a quasi-reversible kinetics at high scan rates,giving rise to an ultrahigh rate capability.By using PANl!Ti3C2Tx as positive electrode,an 1.8 V aqueous asymmetric supercapacitor(ASC)is successfully assembled,showing a maximum energy density of 50.8 Wh·kg^(-1)·(at 0.9 kW-kg-1)and a power density of 18 kW·kg^(-1)(at 26 Wh·kg^(-1)).Moreover,an 3.0 V organic ASC is also elaborately fabricated,·by using PANI/Ti3C2Tx,achieving an ultrahigh energy density of 67.2 Wh·kg^(-1)(at 1.5 kW·kg^(-1))and a power density of 30 kW·kg^(-1)·(at 26.8 Wh·kg^(-1)).The present work not only improves fundamental understanding of the structure-property relationship towards ultrahigh rate capability electrode materials,but also provides valuable guideline for the rational design of high-performance:energy storage devices with both high energy and power densities.