We demonstrate an ultralow-noise single-photon detection system based on a sensitive photomultiplier tube(PMT) with precise temperature control, which can capture fast single photons with intervals around 10 ns.By improvement of the electromagnetic shielding and introduction of the self-differencing method, the dark counts(DCs) are cut down to ~1%. We further develop an ultra-stable PMT cooling subsystem and observe that the DC goes down by a factor of 3.9 each time the temperature drops 10°C. At -20°C it is reduced 400 times with respect to the room temperature(25°C), that is, it becomes only 2 counts per second, which is on par with the superconducting nanowire detectors. Meanwhile, despite a 50% loss, the detection efficiency is still 13%. Our detector is available for ultra-precise single-photon detection in environments with strong electromagnetic disturbances.
We report a new method to deeply analyze the scrambling characteristic of polarization scramblers based on density of polarization states(DPS)statistics that makes it possible to describe the DPS distribution in detail on the whole Poincarésphere,thus easy to locate accurately the nonuniform areas of defective polarization scramblers,which cannot be realized by existing methods.We have built a polarization scrambling system to demonstrate the advantages of our method compared with others by experiments and suggested effective evaluation indexes whose validity is well confirmed by applying to a commercial scrambler.Our conclusions are valuable for accurately analyzing and diagnosing the performance of any polarization scrambler,and quality evaluation of polarization controllers or other polarization devices.
We propose and demonstrate a novel scheme of semi-open-loop polarization control(SOL-PC), which controls the state of polarization(SOP) with high accuracy and uniform high speed. For any desired SOP, we first adjust the initial SOP using open-loop control(OLC) based on the matrix model of a three-unit piezoelectric polarization controller, and quickly move it close to the objective one. Then closed-loop control(CLC) is performed to reduce the error and reach precisely the desired SOP. The response time is three orders faster than that of the present closed-loop polarization control, while the average deviation is on par with it. Finally, the SOL-PC system is successfully applied to realize the suppression of the polarization mode dispersion(PMD) effect and reduce the first-order PMD to near zero. Due to its perfect performance, the SOL-PC energizes the present polarization control to pursue an ideal product that can meet the future requirements in ultrafast optical transmission and quantum communication.