The incipient motion of sand particle from sand bed plays a very important role in the prediction of windblown sand.In this paper,we proposed a new method for predicting the incipient motion of sand particle based on wind speed fluctuation as follows,when the wind speed is larger than the critical wind speed,if the total impulse on sand particle is larger than the critical impulse,incipient motion of sand particle would take place,otherwise if not.Furthermore,from the analysis of entrainment in the rolling and lifting modes,we come to the following conclusion.When the average wind speed is smaller than the critical wind speed,if the average wind speed is used to judge the incipient motion of sand particle,one will underestimate the number of sand particles jumping from the bed,if the instantaneous wind speed is used to judge incipient motion of sand particle,one will overestimate the number of sand particles jumping from the bed;When the average wind speed is larger than the critical wind speed,either the average or the instantaneous wind speeds is used to judge the incipientmotion of sand particles,one will overestimate the number of sand particles jumping from the bed.
In the research of windblown sand movement,the lift-off and incident velocities of saltating sand particles play a significant role in bridging the spatial and temporal scales from single sand particle's motion to windblown sand flux.In this paper,we achieved wind tunnel measurements of the movement of sand particles near sand bed through improving the wind tunnel experimental scheme of paticle image velocimetry(PIV) and data processing method.And then the influence of observation height on the probability distributions of lift-off and incident velocities of sand particles was analyzed.The results demonstrate that the observation height has no obvious influence on the distribution pattern of the lift-off and incident velocities of sand particles,i.e.,the probability distribution of horizontal and vertical velocities of lift-off and incident sand particles follow a Gaussian distribution and a negative exponential distribution,respectively.However,it influences the center of the Gaussian distribution,the decay constant and the amplitude of the negative exponential distribution.
Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the existence of the very large scale motions(VLSMs) during the stable stage both in the stream velocity and the temperature field at the two heights,whose streamwise scales reach up to 10 times the thickness of the boundary layer.The streamwise velocity and the PM10 concentration display a similar frequency corresponding to the peaks of their energy spectra,which implies that the VLSMs of streamwise flow have a significant role in dust transportation.In contrast,the salient deviations of the PM10 concentration at 47 m from the Gaussian distribution are revealed,which means that 47 m is not in the dust transportation layer,but is a region where the dust transportation layer and the outer flow intersect each other.Analysis demonstrates that the energy spectra of the PM10 concentrations at 16 m and 47 m display the "-1" scaling law feature,which has the same frequency range(0.001-0.1 Hz) as that of the wind velocity.This provides a new paradigm for the existence of the self-similarity scaling region in turbulent flow.