We consider degenerate convection-diffusion equations in both one space dimension and several space dimensions. In the first part of this article, we are concerned with the decay rate of solutions of one dimension convection diffusion equation. On the other hand, in the second part of this article, we are concerned with a decay rate of derivatives of solution of convection diffusion equation in several space dimensions.
In this paper, some conditions for the nonsingularity and group inverses of linear combinations of generalized and hypergeneralized projectors are established. Moreover, some formulae for the inverses and group inverses of them are derived. The work of this paper extends some previous results.
In this paper, we revisit the core inverse introduced by Baksalary and Trenkler. We first give some new characterizations of the core inverse. Then, we give a new representation of the core inverse, which is related to AT,S^(2).
In this paper, we introduce an iterative process for two nonself I-asymptotically quasi-nonexpansive mappings and two finite families of such mappings in Banach spaces, and prove some strong convergence theorems for such mappings. Our results extend some existing results.
We prove the existence of a uniform initial datum whose solution decays, in var- ious Lp spaces, at different rates along different time sequences going to infinity, for complex Ginzburg-Landau equation on RN, of various parameters θ and γ.