In this paper, we deal with a weakly coupled evolution P-Laplacian system with inhomogeneous terms. We obtain a critical criterion concerning existence and nonexistence of its global positive solutions. Such a criterion is different from that of the weakly coupled evolution P-Laplacian system with homogeneous terms. Further, we demonstrate existence and nonexistence of its global positive solutions.
This paper deals with the global dynamical behaviors of the positive solutions for a parabolic type ratio-dependent predator-prey system with a crowding term in the prey equation, where it is assumed that the coefficient of the functional response is less than the coefficient of the intrinsic growth rates of the prey species. We demonstrated some special dynamical behaviors of the positive solutions of this system which the persistence of the coexistence of two species can be obtained when the crowding region in the prey equation only is designed suitably. Furthermore, we can obtain that under some conditions, the unique positive steady state solution of the system is globally asymptotically stable.