您的位置: 专家智库 > >

国家自然科学基金(11271171)

作品数:13 被引量:26H指数:4
相关作者:黄浪扬王兰孔令华段雅丽符芳芳更多>>
相关机构:江西师范大学华侨大学南京师范大学更多>>
发文基金:国家自然科学基金福建省自然科学基金中央高校基本科研业务费专项资金更多>>
相关领域:理学更多>>

文献类型

  • 12篇期刊文章
  • 3篇学位论文

领域

  • 15篇理学

主题

  • 5篇紧致格式
  • 5篇高阶紧致格式
  • 4篇守恒
  • 3篇英文
  • 3篇守恒律
  • 3篇CONSER...
  • 2篇多辛格式
  • 2篇显式
  • 2篇辛格式
  • 2篇紧致
  • 2篇哈密尔顿
  • 2篇哈密尔顿系统
  • 2篇高阶
  • 2篇半显式
  • 2篇SCHROD...
  • 2篇SOLITO...
  • 2篇COUPLE...
  • 2篇KDV方程
  • 2篇波方程
  • 2篇长短波方程

机构

  • 7篇江西师范大学
  • 3篇华侨大学
  • 2篇南京师范大学
  • 2篇中国科学技术...
  • 1篇南昌工学院

作者

  • 3篇孔令华
  • 3篇黄浪扬
  • 3篇王兰
  • 2篇段雅丽
  • 1篇张鹏
  • 1篇徐远
  • 1篇符芳芳
  • 1篇赵修成

传媒

  • 2篇Commun...
  • 1篇中国科学技术...
  • 1篇福州大学学报...
  • 1篇华侨大学学报...
  • 1篇江西师范大学...
  • 1篇工程数学学报
  • 1篇计算物理
  • 1篇应用数学与计...
  • 1篇Journa...
  • 1篇Scienc...
  • 1篇Commun...

年份

  • 3篇2019
  • 2篇2018
  • 2篇2017
  • 4篇2015
  • 1篇2014
  • 3篇2013
13 条 记 录,以下是 1-10
排序方式:
二维Ginzburg-Landau方程的一些高阶紧致交替方向格式
Ginzburg-Landau方程是物理学中描述超导现象的重要数学模型,具有十分丰富的物理内涵。因此对Ginzburg-Landau方程的数值研究具有重要的理论意义。本文基于有限差分方法对二维复Ginzburg-Land...
赵芝
关键词:GINZBURG-LANDAU方程有限差分法高阶紧致格式外推法
文献传递
非自共扼非线性薛定谔方程的组合高阶紧致格式
本文主要对非自共轭非线性薛定谔方程构造了一些高精度且高效的数值格式。通过对非自共轭非线性薛定谔方程在空间方向上利用三点六阶组合高阶紧致差分(HOCCD)格式离散、时间方向上用二阶蛙跳(LF)格式离散,构造出了 LF-HO...
梁海燕
KdV方程的一个紧致差分格式被引量:2
2015年
本文基于经典的有限差分方法,讨论了满足周期边界条件的KdV方程的高精度差分格式的构造问题.通过引入中间函数及紧致方法对空间区域进行离散,提出了KdV方程的一个两层隐式紧致差分格式.利用泰勒展开法得出,该格式在时间方向具有二阶精度,但在空间方向可达到六阶精度.采用线性稳定性分析法证明了该格式是稳定的.数值结果表明:本文所提出的紧致差分格式是有效的,在空间方向拥有较高的精度,还能够很好地保持离散动量和能量守恒性质.
赵修成黄浪扬
关键词:KDV方程紧致差分格式稳定性分析
长短波方程多辛数值模拟(英文)被引量:1
2015年
主要研究了Schrdinger-KdV方程的保多辛结构的数值格式.首先讨论了它的正则方程组,然后对此方程组用多辛格式,例如中点格式离散.数值实验验证了格式的有效性.
王兰段雅丽孔令华
Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations被引量:4
2013年
A multisymplectic Fourier pseudo-spectral scheme, which exactly preserves the discrete multisym- plectic conservation law, is presented to solve the Klein-Gordon-SchrSdinger equations. The scheme is of spectral accuracy in space and of second order in time. The scheme preserves the discrete multisymplectic conservation law and the charge conservation law. Moreover, the residuals of some other conservation laws are derived for the geometric numerical integrator. Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme, and demonstrate the correctness of the theoretical analysis.
KONG LingHuaWANG LanJIANG ShanShanDUAN YaLi
A Compact Scheme for Coupled Stochastic Nonlinear Schrodinger Equations被引量:1
2017年
In this paper,we propose a compact scheme to numerically study the coupled stochastic nonlinear Schrodinger equations.We prove that the compact scheme preserves the discrete stochastic multi-symplectic conservation law,discrete charge conservation law and discrete energy evolution law almost surely.Numerical experiments confirm well the theoretical analysis results.Furthermore,we present a detailed numerical investigation of the optical phenomena based on the compact scheme.By numerical experiments for various amplitudes of noise,we find that the noise accelerates the oscillation of the soliton and leads to the decay of the solution amplitudes with respect to time.In particular,if the noise is relatively strong,the soliton will be totally destroyed.Meanwhile,we observe that the phase shift is sensibly modified by the noise.Moreover,the numerical results present inelastic interaction which is different from the deterministic case.
Chuchu ChenJialin HongLihai JiLinghua Kong
哈密尔顿系统的分裂步多辛数值积分(英文)被引量:1
2015年
对哈密尔顿系统而言,辛或多辛积分较传统的数值方法具有优越性.然而,此类数值格式大部分都是隐式的,从而在每一个时间步需要求解一个非线性的代数方程组,这将直接导致计算效率不高.在多辛积分中引进分裂步技巧,称之为分裂步多辛积分,可以弥补这一不足之处,这一数值方法的框架将在该文中简要地讨论,其中,数值例子给出了该方法在物理问题中的应用.
孔令华
关键词:哈密尔顿系统
HIGH ORDER COMPACT MULTISYMPLECTIC SCHEME FOR COUPLED NONLINEAR SCHRODINGER-KDV EQUATIONS被引量:1
2018年
In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear Schrodinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into the multisymplectic Hamiltonian form by introducing some canonical momenta. To simulate the problem efficiently, the CNLS-KdV equations are approximated by a high order compact method in space which preserves N semi-discrete multisymplectic conservation laws. We then discretize the semi-discrete system by using a symplectic midpoint scheme in time. Thus, a full-discrete multisymplectic scheme is obtained for the CNLS-KdV equations. The conservation laws of the full-discrete scheme are analyzed. Some numerical experiments are presented to further verify the convergence and conservation laws of the new scheme.
Lan WangYushun Wang
长短波方程的高阶紧致格式(英文)被引量:2
2015年
在空间方向用高阶紧致格式离散,时间方向分别用CNI格式、Richardson格式和分裂步CNI格式离散,得到了长短波方程的一些数值格式.这些格式在时间方向是二阶收敛的,空间方向是四阶的,而用到的模版与二阶中心差分格式是一样的.数值结果表明,与中心格式相比,新提出的格式较已有格式计算效率更高.同时,从数值结果可以猜测CNI格式和分裂步CNI格式能够保持原问题的一些守恒量.
王兰段雅丽
关键词:长短波方程高阶紧致格式守恒律
LOD-MS for Gross-Pitaevskii Equation in Bose-Einstein Condensates被引量:2
2013年
The local one-dimensional multisymplectic scheme(LOD-MS)is developed for the three-dimensional(3D)Gross-Pitaevskii(GP)equation in Bose-Einstein condensates.The idea is originated from the advantages of multisymplectic integrators and from the cheap computational cost of the local one-dimensional(LOD)method.The 3D GP equation is split into three linear LOD Schrodinger equations and an exactly solvable nonlinear Hamiltonian ODE.The three linear LOD Schrodinger equations are multisymplectic which can be approximated by multisymplectic integrator(MI).The conservative properties of the proposed scheme are investigated.It is masspreserving.Surprisingly,the scheme preserves the discrete local energy conservation laws and global energy conservation law if the wave function is variable separable.This is impossible for conventional MIs in nonlinear Hamiltonian context.The numerical results show that the LOD-MS can simulate the original problems very well.They are consistent with the numerical analysis.
Linghua KongJialin HongJingjing Zhang
共2页<12>
聚类工具0