反硝化(Denitrification,DNF)和硝酸盐异化还原为氨(Dissimilatory Nitrate Reduction to Ammonium,DNRA)是硝酸盐异养还原的2个主要途径.反硝化被认为是彻底去除水体氮负荷的主要过程;而硝酸盐异化还原为氨则将水体中的硝态氮转化为氨氮.2个过程均以硝酸盐为电子受体,并存在相互竞争关系.这2个过程的研究对理解湿地氮转化以及指导湿地氮污染修复具有重要意义.运用无扰动沉积物柱样流动培养、15NO-3-N同位素示踪实验,并采用氨氧化-膜接口质谱仪联用(OX/MIMS)测定氨氮同位素产物的方法,对鄱阳湖碟形湖湿地、巢湖重污染河流湿地、巢湖重污染湖泊湿地3种类型湿地沉积物-水界面的硝酸盐异养还原过程进行研究,结果表明存在显著差异.3种类型湿地DNF速率的范围为(6.36±2.57)^(99.98±14.05)μmol/(m2·h),DNRA速率的范围为(0.51±0.45)^(79.82±6.08)μmol/(m2·h).在3种类型湿地中,随着氮污染程度加重,DNF和DNRA速率均显著增加,且DNRA过程在总的硝态氮异养还原中所占的比重不断增大,说明较高的硝酸盐负荷、较高的沉积物有机质含量更有利于DNRA过程的竞争.而对反硝化方式的进一步研究发现,巢湖重污染河流、湖泊湿地主要以非耦合反硝化为主导过程,而鄱阳湖碟形湖湿地则更倾向于以硝化过程耦合控制的反硝化为主.
The microscale distribution of oxygen,the nitrogen flux and the denitrification rates in sediment inhabited by chironomid larvae(Tanypus chinensis) were measured in eutrophic Lake Taihu,China.The presence of the chironomids in the sediment increased the oxygen diffusional flux from 10.4 ± 1.4 to 12.7 ± 2.5 mmol O 2 /(m 2 ·day).The burrows of the larvae represented "hot spots" and strongly influenced the nitrogen cycles and diagenetic activity in the sediment.The results indicate that the bioturbation effects of Tanypus chinensis chironomid larvae increased the capacity of the sediment as a sink for nitrate and a source for ammonium.Nitrate influx and ammonium outflux were increased 8.8 and 1.7 times,respectively.Under bioturbation,the amount of nitrate consumed was greater than the amount of ammonium released.The total denitrification rate was also enhanced from 0.76 ± 0.34 to 5.50 ± 1.30 mmol N/(m 2 ·day).The net effect was that the bioturbated sediments acted as a net sink for inorganic nitrogen under direct and indirect bioturbation effects compared to the control.